Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in \TeX

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions of a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright \(\copyright\) 1979 by Consumers Union of U.S., Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, Stata Press, Mata, and NetCourse are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

NetCourseNow is a trademark of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2017. Stata: Release 15. Statistical Software. College Station, TX: StataCorp LLC.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>intro</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to functions reference manual</td>
<td>1</td>
</tr>
<tr>
<td>Functions by category</td>
<td>2</td>
</tr>
<tr>
<td>Functions by name</td>
<td>19</td>
</tr>
<tr>
<td>Date and time functions</td>
<td>35</td>
</tr>
<tr>
<td>Mathematical functions</td>
<td>48</td>
</tr>
<tr>
<td>Matrix functions</td>
<td>54</td>
</tr>
<tr>
<td>Programming functions</td>
<td>61</td>
</tr>
<tr>
<td>Random-number functions</td>
<td>71</td>
</tr>
<tr>
<td>Selecting time-span functions</td>
<td>82</td>
</tr>
<tr>
<td>Statistical functions</td>
<td>84</td>
</tr>
<tr>
<td>String functions</td>
<td>125</td>
</tr>
<tr>
<td>Trigonometric functions</td>
<td>155</td>
</tr>
<tr>
<td>Subject and author index</td>
<td>158</td>
</tr>
</tbody>
</table>
Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[XT] xtreg

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third is a reference to the xtreg entry in the Longitudinal-Data/Panel-Data Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide
[R] Stata Base Reference Manual
[BAYES] Stata Bayesian Analysis Reference Manual
[FN] Stata Functions Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[M] Stata Multiple-Imputation Reference Manual
[PSS] Stata Power and Sample-Size Reference Manual
[SVY] Stata Survey Data Reference Manual
[I] Stata Glossary and Index
This manual describes the functions allowed by Stata. For information on Mata functions, see [M-4] intro.

A quick note about missing values: Stata denotes a numeric missing value by ., .a, .b, ..., or .z. A string missing value is denoted by "" (the empty string). Here any one of these may be referred to by missing. If a numeric value \(x \) is missing, then \(x \geq . \) is true. If a numeric value \(x \) is not missing, then \(x < . \) is true.

See [U] 12.2.1 Missing values for details.
Date and time functions

bofd("cal",ed) the \(e_b \) business date corresponding to \(e_d \)
Cdhms(ed,h,m,s) the \(e_{tc} \) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to \(e_d, h, m, s \)
Chms(h,m,s) the \(e_{tc} \) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to \(h, m, s \) on 01jan1960
Clock(s1,s2[,Y]) the \(e_{tc} \) datetime (ms. since 01jan1960 00:00:00.000) corresponding to \(s_1 \) based on \(s_2 \) and \(Y \)
clock(s1,s2[,Y]) the \(e_{tc} \) datetime (ms. since 01jan1960 00:00:00.000) corresponding to \(s_1 \) based on \(s_2 \) and \(Y \)
Cmdyhms(M,D,Y,h,m,s) the \(e_{tc} \) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to \(M, D, Y, h, m, s \)
Cofc(etc) the \(e_{tc} \) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of \(e_{tc} \) (ms. without leap seconds since 01jan1960 00:00:00.000)
cofC(etc) the \(e_{tc} \) datetime (ms. without leap seconds since 01jan1960 00:00:00.000) of \(e_{tc} \) (ms. with leap seconds since 01jan1960 00:00:00.000)
Cofd(ed) the \(e_{tc} \) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of date \(e_d \) at time 00:00:00.000
cofd(ed) the \(e_{tc} \) datetime (ms. since 01jan1960 00:00:00.000) of date \(e_d \) at time 00:00:00.000
daily(s1,s2[,Y]) a synonym for date(s1,s2[,Y])
date(s1,s2[,Y]) the \(e_d \) date (days since 01jan1960) corresponding to \(s_1 \) based on \(s_2 \) and \(Y \)
day(ed) the numeric day of the month corresponding to \(e_d \)
dhms(ed,h,m,s) the \(e_{tc} \) datetime (ms. since 01jan1960 00:00:00.000) corresponding to \(e_d, h, m, \) and \(s \)
dofb(\(e_b \),"cal") the \(e_d \) datetime corresponding to \(e_b \)
dofC(etc) the \(e_d \) date (days since 01jan1960) of datetime \(e_{tc} \) (ms. with leap seconds since 01jan1960 00:00:00.000)
dofc(e_{tc})

the e_d date (days since 01jan1960) of datetime e_{tc} (ms. since 01jan1960 00:00:00.000)

dofh(e_h)

the e_d date (days since 01jan1960) of the start of half-year e_h

dofm(e_m)

the e_d date (days since 01jan1960) of the start of month e_m

dofq(e_q)

the e_d date (days since 01jan1960) of the start of quarter e_q

dofw(e_w)

the e_d date (days since 01jan1960) of the start of week e_w

dofy(e_y)

the numeric day of the week corresponding to date e_d; 0 = Sunday, 1 = Monday, ..., 6 = Saturday

dow(e_d)

the numeric day of the year corresponding to date e_d

halfyear(e_d)

the numeric half of the year corresponding to date e_d

halfyearly$(s_1,s_2[,Y])$

the e_h half-yearly date (half-years since 1960h1) corresponding to s_1 based on s_2 and Y; Y specifies topyear; see date()

hh(e_{tc})

the hour corresponding to datetime e_{tc} (ms. since 01jan1960 00:00:00.000)

hhC(e_{tC})

the hour corresponding to datetime e_{tC} (ms. with leap seconds since 01jan1960 00:00:00.000)

hms(h,m,s)

the e_{tc} datetime (ms. since 01jan1960 00:00:00.000) corresponding to h, m, s on 01jan1960

hofd(e_d)

the e_h half-yearly date (half years since 1960h1) containing date e_d

hours(ms)

the e_d date (days since 01jan1960) corresponding to M, D, Y

mdy(M,D,Y)

the e_{tc} datetime (ms. since 01jan1960 00:00:00.000) corresponding to M, D, Y, h, m, s

mdyhms(M,D,Y,h,m,s)

the minute corresponding to datetime e_{tc} (ms. since 01jan1960 00:00:00.000)

mm(e_{tc})

the minute corresponding to datetime e_{tc} (ms. since 01jan1960 00:00:00.000)

mmC(e_{tC})

the minute corresponding to datetime e_{tC} (ms. with leap seconds since 01jan1960 00:00:00.000)

mofd(e_d)

the e_m monthly date (months since 1960m1) containing date e_d

month(e_d)

the numeric month corresponding to date e_d

monthly$(s_1,s_2[,]Y)$

the e_m monthly date (months since 1960m1) corresponding to s_1 based on s_2 and Y; Y specifies topyear; see date()

msofhours(h)

the e_q quarterly date (quarters since 1960q1) containing date e_d

msofminutes(m)

the e_q quarterly date (quarters since 1960q1) corresponding to s_1 based on s_2 and Y; Y specifies topyear; see date()

msofseconds(s)

seconds(ms)

the second corresponding to datetime e_{tc} (ms. since 01jan1960 00:00:00.000)

ss(e_{tc})

the second corresponding to datetime e_{tC} (ms. with leap seconds since 01jan1960 00:00:00.000)

ssC(e_{tC})
4 Functions by category

tc(1)
convenience function to make typing dates and times in expressions easier

td(1)
convenience function to make typing dates in expressions easier

th(1)
convenience function to make typing half-yearly dates in expressions easier

tm(1)
convenience function to make typing monthly dates in expressions easier

tq(1)
convenience function to make typing quarterly dates in expressions easier

tw(1)
convenience function to make typing weekly dates in expressions easier

week(ed)
the numeric week of the year corresponding to date ed, the %td encoded date (days since 01jan1960)

weekly(s1,s2[,Y])
the ew weekly date (weeks since 1960w1) corresponding to s1 based on s2 and Y; Y specifies toyear; see date()

wofd(ed)
the ew weekly date (weeks since 1960w1) containing date ed

year(ed)
the numeric year corresponding to date ed

yearly(s1,s2[,Y])
the ey yearly date (year) corresponding to s1 based on s2 and Y; Y specifies toyear; see date()

yh(Y,H)
the eh half-yearly date (half-years since 1960h1) corresponding to year Y, half-year H

ym(Y,M)
the em monthly date (months since 1960m1) corresponding to year Y, month M

yofd(ed)
the ey yearly date (year) containing date ed

yq(Y,Q)
the eq quarterly date (quarters since 1960q1) corresponding to year Y, quarter Q

yw(Y,W)
the ew weekly date (weeks since 1960w1) corresponding to year Y, week W

Mathematical functions

abs(x)
the absolute value of x

ceil(x)
the unique integer n such that \(n - 1 < x \leq n \); x (not “.”) if x is missing, meaning that ceil(.a) = .a

cloglog(x)
the complementary log-log of x

comb(n,k)
the combinatorial function \(n!/{k!(n-k)!} \)

digamma(x)
the digamma() function, \(d\ln\Gamma(x)/dx \)

exp(x)
the exponential function \(e^x \)

floor(x)
the unique integer n such that \(n \leq x < n + 1 \); x (not “.”) if x is missing, meaning that floor(.a) = .a

int(x)
the integer obtained by truncating x toward 0 (thus, int(5.2) = 5 and int(-5.8) = -5); x (not “.”) if x is missing, meaning that int(.a) = .a

invcloglog(x)
the inverse of the complementary log-log function of x
Functions by category

invlogit(x)
the inverse of the logit function of \(x \)

ln(x)
the natural logarithm, \(\ln(x) \)

lnfactorial(n)
the natural log of \(n \) factorial = \(\ln(n!) \)

lngamma(x)
\[\ln \{ \Gamma(x) \} \]

log(x)
the natural logarithm, \(\ln(x) \); thus, a synonym for \(\ln(x) \)

log10(x)
the base-10 logarithm of \(x \)

logit(x)
the log of the odds ratio of \(x \),
\[\logit(x) = \ln \left(\frac{x}{1-x} \right) \]

max(x_1, x_2, \ldots, x_n)
the maximum value of \(x_1, x_2, \ldots, x_n \)

min(x_1, x_2, \ldots, x_n)
the minimum value of \(x_1, x_2, \ldots, x_n \)

mod(x, y)
the modulus of \(x \) with respect to \(y \)

reldif(x, y)
the “relative” difference \(|x - y|/(|y| + 1) \); 0 if both arguments are the same type of extended missing value; \(missing \) if only one argument is missing or if the two arguments are two different types of \(missing \)

round(x, y) or **round(x)**
\(x \) rounded in units of \(y \) or \(x \) rounded to the nearest integer if the argument \(y \) is omitted; \(x \) (not \(\cdot . \)) if \(x \) is missing (meaning that \(\text{round}(. \cdot a) = . \cdot a \) and that \(\text{round}(. \cdot a, y) = . \cdot a \) if \(y \) is not missing) and if \(y \) is missing, then \(. \cdot . \) is returned

sign(x)
the sign of \(x \): \(-1\) if \(x < 0 \), \(0 \) if \(x = 0 \), \(1 \) if \(x > 0 \), or \(missing \) if \(x \) is missing

sqrt(x)
the square root of \(x \)

sum(x)
the running sum of \(x \), treating missing values as zero

trigamma(x)
the second derivative of \(\text{lngamma}(x) = d^2 \ln \Gamma(x)/dx^2 \)

trunc(x)
a synonym for \(\text{int}(x) \)

Matrix functions

cholesky(M)
the Cholesky decomposition of the matrix: if \(R = \text{cholesky}(S) \), then \(RR^T = S \)

coleqnumb(M, s)
the equation number of \(M \) associated with column equation \(s \); \(missing \) if the column equation cannot be found

colnfreeparms(M, s)
the number of free parameters in columns of \(M \)

colnumb(M, s)
the column number of \(M \) associated with column name \(s \); \(missing \) if the column cannot be found

colsof(M)
the number of columns of \(M \)

corr(M)
the correlation matrix of the variance matrix

det(M)
the determinant of matrix \(M \)

diag(v)
the square, diagonal matrix created from the row or column vector \(v \)

diag0cnt(M)
the number of zeros on the diagonal of \(M \)

el(s, i, j)
s[\(\text{floor}(i), \text{floor}(j) \)], the \(i, j \) element of the matrix named \(s \); \(missing \) if \(i \) or \(j \) are out of range or if matrix \(s \) does not exist

get(systemname)
a copy of Stata internal system matrix \(\text{systemname} \)

hadamard(M, N)
a matrix whose \(i, j \) element is \(M[i, j] \cdot N[i, j] \) (if \(M \) and \(N \) are not the same size, this function reports a conformability error)
I(n) an $n \times n$ identity matrix if n is an integer; otherwise, a round(n) × round(n) identity matrix

inv(M) the inverse of the matrix M

invsym(M) the inverse of M if M is positive definite

issymmetric(M) 1 if the matrix is symmetric; otherwise, 0

J(r,c,z) the $r \times c$ matrix containing elements z

matmissing(M) 1 if any elements of the matrix are missing; otherwise, 0

matuniform(r,c) the $r \times c$ matrices containing uniformly distributed pseudorandom numbers on the interval $(0,1)$

mreldif(X,Y) the relative difference of X and Y, where the relative difference is defined as $\max_{i,j} \{|x_{ij} - y_{ij}|/(|y_{ij}| + 1)\}$

nullmat(matname) use with the row-join (,) and column-join (\) operators in programming situations

roweqnumb(M,s) the equation number of M associated with row equation s; missing if the row equation cannot be found

rownfreeparms(M,s) the number of free parameters in rows of M

rownumb(M,s) the row number of M associated with row name s; missing if the row cannot be found

rowsof(M) the number of rows of M

sweep(M,i) matrix M with ith row/column swept

trace(M) the trace of matrix M

vec(M) a column vector formed by listing the elements of M, starting with the first column and proceeding column by column

vecdiag(M) the row vector containing the diagonal of matrix M

Programming functions

autocode(x,n,x0,x1) partitions the interval from x_0 to x_1 into n equal-length intervals and returns the upper bound of the interval that contains x

byteorder() 1 if your computer stores numbers by using a hilo byte order and evaluates to 2 if your computer stores numbers by using a lohi byte order

c(name) the value of the system or constant result c(name) (see [P] return)

_-caller() version of the program or session that invoked the currently running program; see [P] version

chop(x, ϵ) round(x) if $\text{abs}(x - \text{round}(x)) < ϵ$; otherwise, x; or x if x is missing

clip(x,a,b) x if $a < x < b$, b if $x \geq b$, a if $x \leq a$, or missing if x is missing or if $a > b$; x if x is missing

cond(x,a,b[,c]) a if x is true and nonmissing, b if x is false, and c if x is missing; a if c is not specified and x evaluates to missing

e(name) the value of stored result e(name); see [U] 18.8 Accessing results calculated by other programs

e(sample) 1 if the observation is in the estimation sample and 0 otherwise
epsdouble() the machine precision of a double-precision number
epsfloat() the machine precision of a floating-point number
fileexists(f) 1 if the file specified by f exists; otherwise, 0
fileread(f) the contents of the file specified by f
filereaderror(f) 0 or positive integer, said value having the interpretation of a return code
filewrite(f,s[,r]) writes the string specified by s to the file specified by f and returns the number of bytes in the resulting file
float(x) the value of x rounded to float precision
fmtwidth(fmtstr) the output length of the %fmt contained in fmtstr; missing if fmtstr does not contain a valid %fmt
has_eprop(name) 1 if name appears as a word in e(properties); otherwise, 0
inlist(z,a,b,...) 1 if z is a member of the remaining arguments; otherwise, 0
inrange(z,a,b) 1 if it is known that a ≤ z ≤ b; otherwise, 0
irecode(x,x_1,...,x_n) missing if x_1,x_2,...,x_n is not weakly increasing; x if x is missing; x_1 if x ≤ x_1; x_2 if x ≤ x_2, ..., x_n−1. x_i ≥ . is interpreted as x_i = +∞
matrix(exp) restricts name interpretation to scalars and matrices; see scalar()
maxbyte() the largest value that can be stored in storage type byte
maxdouble() the largest value that can be stored in storage type double
maxfloat() the largest value that can be stored in storage type float
maxint() the largest value that can be stored in storage type int
maxlong() the largest value that can be stored in storage type long
mi(x_1,x_2,...,x_n) a synonym for missing(x_1,x_2,...,x_n)
mindouble() the smallest value that can be stored in storage type double
minfloat() the smallest value that can be stored in storage type float
minint() the smallest value that can be stored in storage type int
minlong() the smallest value that can be stored in storage type long
missing(x_1,x_2,...,x_n) 1 if any x_i evaluates to missing; otherwise, 0
r(name) the value of the stored result r(name); see [U] 18.8 Accessing results calculated by other programs
recode(x,x_1,...,x_n) missing if x_1,x_2,...,x_n is not weakly increasing; x if x is missing; x_1 if x ≤ x_1; x_2 if x ≤ x_2, ..., otherwise, x_n if x > x_1, x_2, ..., x_n−1. x_i ≥ . is interpreted as x_i = +∞
replay() 1 if the first nonblank character of local macro `0' is a comma, or if `0' is empty
return(name) the value of the to-be-stored result r(name); see [P] return
s(name) the value of stored result s(name); see [U] 18.8 Accessing results calculated by other programs
scalar(exp) restricts name interpretation to scalars and matrices
smallestdouble() the smallest double-precision number greater than zero
Random-number functions

- **rbeta(a,b)** beta(a,b) random variates, where a and b are the beta distribution shape parameters
- **rbinomial(n,p)** binomial(n,p) random variates, where n is the number of trials and p is the success probability
- **rcauchy(a,b)** Cauchy(a,b) random variates, where a is the location parameter and b is the scale parameter
- **rchi2(df)** chi-squared, with df degrees of freedom, random variates
- **rexponential(b)** exponential random variates with scale b
- **rgamma(a,b)** gamma(a,b) random variates, where a is the gamma shape parameter and b is the scale parameter
- **rhypergeometric(N,K,n)** hypergeometric random variates
- **rigaussian(m,a)** inverse Gaussian random variates with mean m and shape parameter a
- **rlaplace(m,b)** Laplace(m,b) random variates with mean m and scale parameter b
- **rlogistic()** logistic variates with mean 0 and standard deviation \(\pi/\sqrt{3} \)
- **rlogistic(s)** logistic variates with mean 0, scale s, and standard deviation \(s\pi/\sqrt{3} \)
- **rlogistic(m,s)** logistic variates with mean m, scale s, and standard deviation \(s\pi/\sqrt{3} \)
- **rnbinomial(n,p)** negative binomial random variates
- **rnormal()** standard normal (Gaussian) random variates, that is, variates from a normal distribution with a mean of 0 and a standard deviation of 1
- **rnormal(m)** normal(m,1) (Gaussian) random variates, where m is the mean and the standard deviation is 1
- **rnormal(m,s)** normal(m,s) (Gaussian) random variates, where m is the mean and s is the standard deviation
- **rpoisson(m)** Poisson(m) random variates, where m is the distribution mean
- **rt(df)** Student’s t random variates, where df is the degrees of freedom
- **runiform()** uniformly distributed random variates over the interval (0,1)
- **runiform(a,b)** uniformly distributed random variates over the interval (a,b)
- **runiformint(a,b)** uniformly distributed random integer variates on the interval \([a,b]\)
- **rweibull(a,b)** Weibull variates with shape a and scale b
- **rweibull(a,b,g)** Weibull variates with shape a, scale b, and location g
- **rweibullph(a,b)** Weibull (proportional hazards) variates with shape a and scale b
- **rweibullph(a,b,g)** Weibull (proportional hazards) variates with shape a, scale b, and location g

Selecting time-span functions

- **tin(d1,d2)** true if \(d_1 \leq t \leq d_2 \), where t is the time variable previously tsset
- **twithin(d1,d2)** true if \(d_1 < t < d_2 \), where t is the time variable previously tsset
Statistical functions

- **betaden**(a, b, x): the probability density of the beta distribution, where a and b are the shape parameters; 0 if $x < 0$ or $x > 1$
- **binomial**(n, k, θ): the probability of observing $\text{floor}(k)$ or fewer successes in $\text{floor}(n)$ trials when the probability of a success on one trial is θ; 0 if $k < 0$; or 1 if $k > n$
- **binomialp**(n, k, p): the probability of observing $\text{floor}(k)$ successes in $\text{floor}(n)$ trials when the probability of a success on one trial is p
- **binomialtail**(n, k, θ): the probability of observing $\text{floor}(k)$ or more successes in $\text{floor}(n)$ trials when the probability of a success on one trial is θ; 1 if $k < 0$; or 0 if $k > n$
- **binormal**(h, k, ρ): the joint cumulative distribution $\Phi(h, k, \rho)$ of bivariate normal with correlation ρ
- **cauchy**(a, b, x): the cumulative Cauchy distribution with location parameter a and scale parameter b
- **cauchyden**(a, b, x): the probability density of the Cauchy distribution with location parameter a and scale parameter b
- **cauchytail**(a, b, x): the reverse cumulative (upper tail or survivor) Cauchy distribution with location parameter a and scale parameter b
- **chi2**(df, x): the cumulative χ^2 distribution with df degrees of freedom; 0 if $x < 0$
- **chi2den**(df, x): the probability density of the chi-squared distribution with df degrees of freedom; 0 if $x < 0$
- **chi2tail**(df, x): the reverse cumulative (upper tail or survivor) χ^2 distribution with df degrees of freedom; 1 if $x < 0$
- **dgammapda**(a, x): $\frac{\partial P(a, x)}{\partial a}$, where $P(a, x) = \gamma\text{map}(a, x)$; 0 if $x < 0$
- **dgammadada**(a, x): $\frac{\partial^2 P(a, x)}{\partial a^2}$, where $P(a, x) = \gamma\text{map}(a, x)$; 0 if $x < 0$
- **dgammapdadx**(a, x): $\frac{\partial^2 P(a, x)}{\partial a \partial x}$, where $P(a, x) = \gamma\text{map}(a, x)$; 0 if $x < 0$
- **dgammapdx**(a, x): $\frac{\partial P(a, x)}{\partial x}$, where $P(a, x) = \gamma\text{map}(a, x)$; 0 if $x < 0$
- **dgammapdxadx**(a, x): $\frac{\partial^2 P(a, x)}{\partial x^2}$, where $P(a, x) = \gamma\text{map}(a, x)$; 0 if $x < 0$
- **dunnettprob**(k, df, x): the cumulative multiple range distribution that is used in Dunnett’s multiple-comparison method with k ranges and df degrees of freedom; 0 if $x < 0$
- **exponential**(b, x): the cumulative exponential distribution with scale b
- **exponentialden**(b, x): the probability density function of the exponential distribution with scale b
- **exponentialtail**(b, x): the reverse cumulative exponential distribution with scale b
- **F**(df_1, df_2, f): the cumulative F distribution with df_1 numerator and df_2 denominator degrees of freedom: $F(df_1, df_2, f) = \int_0^f \text{Fden}(df_1, df_2, t)\, dt$; 0 if $f < 0$
- **Fden**(df_1, df_2, f): the probability density function of the F distribution with df_1 numerator and df_2 denominator degrees of freedom; 0 if $f < 0$
- **Ftail**(df_1, df_2, f): the reverse cumulative (upper tail or survivor) F distribution with df_1 numerator and df_2 denominator degrees of freedom; 1 if $f < 0$
10 Functions by category

\begin{align*}
gammaden(a,b,g,x) & \text{ the probability density function of the gamma distribution; } 0 \text{ if } x < g \\
gammap(a,x) & \text{ the cumulative gamma distribution with shape parameter } a; 0 \text{ if } x < 0 \\
gammap\text{tail}(a,x) & \text{ the reverse cumulative (upper tail or survivor) gamma distribution with shape parameter } a; 1 \text{ if } x < 0 \\
hypergeometric(N,K,n,k) & \text{ the cumulative probability of the hypergeometric distribution} \\
hypergeometric\text{p}(N,K,n,k) & \text{ the hypergeometric probability of } k \text{ successes out of a sample of size } n, \text{ from a population of size } N \text{ containing } K \text{ elements that have the attribute of interest} \\
ibeta(a,b,x) & \text{ the cumulative beta distribution with shape parameters } a \text{ and } b; 0 \text{ if } x < 0; \text{ or } 1 \text{ if } x > 1 \\
ibeta\text{tail}(a,b,x) & \text{ the reverse cumulative (upper tail or survivor) beta distribution with shape parameters } a \text{ and } b; 1 \text{ if } x < 0; \text{ or } 0 \text{ if } x > 1 \\
ingaussian(m,a,x) & \text{ the cumulative inverse Gaussian distribution with mean } m \text{ and shape parameter } a; 0 \text{ if } x \leq 0 \\
ingaussi\text{nden}(m,a,x) & \text{ the probability density of the inverse Gaussian distribution with mean } m \text{ and shape parameter } a; 0 \text{ if } x \leq 0 \\
ingaussi\text{ntail}(m,a,x) & \text{ the reverse cumulative (upper tail or survivor) inverse Gaussian distribution with mean } m \text{ and shape parameter } a; 1 \text{ if } x \leq 0 \\
in\text{vbinomial}(n,k,p) & \text{ the inverse of the cumulative binomial; that is, } \theta (\theta = \text{probability of success on one trial}) \text{ such that the probability of observing } \lfloor k \rfloor \text{ or fewer successes in } \lfloor n \rfloor \text{ trials is } p \\
in\text{vbinomial\text{tail}}(n,k,p) & \text{ the inverse of the right cumulative binomial; that is, } \theta (\theta = \text{probability of success on one trial}) \text{ such that the probability of observing } \lfloor k \rfloor \text{ or more successes in } \lfloor n \rfloor \text{ trials is } p \\
in\text{vcauchy}(a,b,p) & \text{ the inverse of cauchy(); if cauchy}(a,b,x) = p, \text{ then } \text{invcauchy}(a,b,p) = x \\
in\text{vcauchy\text{tail}}(a,b,p) & \text{ the inverse of cauchy\text{tail}(); if cauchy\text{tail}(a,b,x) = p, \text{ then } \text{invcauchy\text{tail}}(a,b,p) = x \\
in\text{vchi2}(df,p) & \text{ the inverse of chi2(); if chi2}(df,x) = p, \text{ then } \text{invchi2}(df,p) = x \\
in\text{vchi2\text{tail}}(df,p) & \text{ the inverse of chi2\text{tail}(); if chi2\text{tail}(df,x) = p, \text{ then } \text{invchi2\text{tail}}(df,p) = x \\
in\text{vdunnett\text{prob}}(k,df,p) & \text{ the inverse cumulative multiple range distribution that is used in Dunnett’s multiple-comparison method with } k \text{ ranges and } df \text{ degrees of freedom} \\
in\text{vexponential}(b,p) & \text{ the inverse cumulative exponential distribution with scale } b; \text{ if } \text{exponential}(b,x) = p, \text{ then } \text{invexponential}(b,p) = x \\
in\text{vexponential\text{tail}}(b,p) & \text{ the inverse reverse cumulative exponential distribution with scale } b; \text{ if } \text{exponential\text{tail}}(b,x) = p, \text{ then } \text{invexponential\text{tail}}(b,p) = x \\
inF(df_1,df_2,p) & \text{ the inverse cumulative } F \text{ distribution; if } F(df_1,df_2,f) = p, \text{ then } \text{invF}(df_1,df_2,p) = f \\
inF\text{tail}(df_1,df_2,p) & \text{ the inverse reverse cumulative (upper tail or survivor) } F \text{ distribution; if } F\text{tail}(df_1,df_2,f) = p, \text{ then } \text{invF\text{tail}}(df_1,df_2,p) = f \\
in\text{vgammap}(a,p) & \text{ the inverse cumulative gamma distribution; if } \text{gammap}(a,x) = p, \text{ then } \text{invgammap}(a,p) = x
\end{align*}
invgammaptail\((a,p)\) the inverse reverse cumulative (upper tail or survivor) gamma distribution: if \(\text{gammap}(a,x) = p\), then \(\text{invgammap}(a,p) = x\)

invbeta\((a,b,p)\) the inverse cumulative beta distribution: if \(\text{beta}(a,b,x) = p\), then \(\text{invbeta}(a,b,p) = x\)

invbetatail\((a,b,p)\) the inverse reverse cumulative (upper tail or survivor) beta distribution: if \(\text{betatail}(a,b,x) = p\), then \(\text{invbetatail}(a,b,p) = x\)

invgaussian\((m,a,p)\) the inverse of \(\text{gaussian}(m,a)\): if \(\text{gaussian}(m,a,x) = p\), then \(\text{invgaussian}(m,a,p) = x\)

invgaussian_tail\((m,a,p)\) the inverse of \(\text{gaussian_tail}(m,a)\): if \(\text{gaussian_tail}(m,a,x) = p\), then \(\text{invgaussian_tail}(m,a,p) = x\)

invlaplace\((m,b,p)\) the inverse of \(\text{laplace}(m,b)\): if \(\text{laplace}(m,b,x) = p\), then \(\text{invlaplace}(m,b,p) = x\)

invlaplacetail\((m,b,p)\) the inverse of \(\text{laplacetail}(m,b)\): if \(\text{laplacetail}(m,b,x) = p\), then \(\text{invlaplacetail}(m,b,p) = x\)

invlogistic\((p)\) the inverse cumulative logistic distribution: if \(\text{logistic}(x) = p\), then \(\text{invlogistic}(p) = x\)

invlogistic\((s,p)\) the inverse cumulative logistic distribution: if \(\text{logistic}(s,x) = p\), then \(\text{invlogistic}(s,p) = x\)

invlogistic\((m,s,p)\) the inverse cumulative logistic distribution: if \(\text{logistic}(m,s,x) = p\), then \(\text{invlogistic}(m,s,p) = x\)

invlogistictail\((p)\) the inverse reverse cumulative logistic distribution: if \(\text{logistictail}(x) = p\), then \(\text{invlogistictail}(p) = x\)

invlogistictail\((s,p)\) the inverse reverse cumulative logistic distribution: if \(\text{logistictail}(s,x) = p\), then \(\text{invlogistictail}(s,p) = x\)

invlogistictail\((m,s,p)\) the inverse reverse cumulative logistic distribution: if \(\text{logistictail}(m,s,x) = p\), then \(\text{invlogistictail}(m,s,p) = x\)

invnbibinomial\((n,k,q)\) the value of the negative binomial parameter, \(p\), such that \(q = \text{nbinomial}(n,k,p)\)

invnbibinomial_tail\((n,k,q)\) the value of the negative binomial parameter, \(p\), such that \(q = \text{nbinomial_tail}(n,k,p)\)

invmchi2\((df,np,p)\) the inverse cumulative noncentral \(\chi^2\) distribution: if \(\text{mchi2}(df,np,x) = p\), then \(\text{invmchi2}(df,np,p) = x\)

invmchitail\((df,np,p)\) the inverse reverse cumulative (upper tail or survivor) noncentral \(\chi^2\) distribution: if \(\text{mchitail}(df,np,x) = p\), then \(\text{invmchitail}(df,np,p) = x\)

invnF\((df1,df2,np,p)\) the inverse cumulative noncentral \(F\) distribution: if \(\text{nF}(df1,df2,np,f) = p\), then \(\text{invnF}(df1,df2,np,p) = f\)

invnFtail\((df1,df2,np,p)\) the inverse reverse cumulative (upper tail or survivor) noncentral \(F\) distribution: if \(\text{nFtail}(df1,df2,np,x) = p\), then \(\text{invnFtail}(df1,df2,np,p) = x\)

invnibeta\((a,b,np,p)\) the inverse cumulative noncentral beta distribution: if \(\text{nibeta}(a,b,np,x) = p\), then \(\text{invnibeta}(a,b,np,p) = x\)

invnormal\((p)\) the inverse cumulative standard normal distribution: if \(\text{normal}(z) = p\), then \(\text{invnormal}(p) = z\)
invpoisson(k,p) the Poisson mean such that the cumulative Poisson distribution evaluated at k is p: if poisson(m,k) = p, then invpoisson(k,p) = m

invpoissontail(k,q) the Poisson mean such that the reverse cumulative Poisson distribution evaluated at k is q: if poisson(m,k) = q, then invpoisson(k,q) = m

invt(df,p) the inverse cumulative Student’s t distribution: if $t(df,t) = p$, then invt(df,p) = t

invttail(df,p) the inverse reverse cumulative (upper tail or survivor) noncentral Student’s t distribution: if $ttail(df,t) = p$, then invttail(df,p) = t

invtukeyprob(k,df,p) the inverse cumulative Tukey’s Studentized range distribution with k ranges and df degrees of freedom

invweibull(a,b,p) the inverse cumulative Weibull distribution with shape a and scale b: if weibull(a,b,x) = p, then invweibull(a,b,p) = x

invweibull(a,b,g,p) the inverse cumulative Weibull distribution with shape a, scale b, and location g: if weibull(a,b,g,x) = p, then invweibull(a,b,g,p) = x

invweibullph(a,b,p) the inverse cumulative Weibull (proportional hazards) distribution with shape a and scale b: if weibullph(a,b,x) = p, then invweibullph(a,b,p) = x

invweibullph(a,b,g,p) the inverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g: if weibullph(a,b,g,x) = p, then invweibullph(a,b,g,p) = x

invweibullphtail(a,b,p) the inverse reverse cumulative Weibull (proportional hazards) distribution with shape a and scale b: if weibullphtail(a,b,x) = p, then invweibullphtail(a,b,p) = x

invweibullphtail(a,b,g,p) the inverse reverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g: if weibullphtail(a,b,g,x) = p, then invweibullphtail(a,b,g,p) = x

laplace(m,b,x) the cumulative Laplace distribution with mean m and scale parameter b

laplaceden(m,b,x) the probability density of the Laplace distribution with mean m and scale parameter b

laplacetail(m,b,x) the reverse cumulative (upper tail or survivor) Laplace distribution with mean m and scale parameter b

lncauchyden(a,b,x) the natural logarithm of the density of the Cauchy distribution with location parameter a and scale parameter b
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lnigammaden((a,b,x))</td>
<td>the natural logarithm of the inverse gamma density, where (a) is the shape parameter and (b) is the scale parameter</td>
</tr>
<tr>
<td>lnigaussianden((m,a,x))</td>
<td>the natural logarithm of the inverse Gaussian density with mean (m) and shape parameter (a)</td>
</tr>
<tr>
<td>lniwishartden((df,V,X))</td>
<td>the natural logarithm of the density of the inverse Wishart distribution; missing if (df \leq n - 1)</td>
</tr>
<tr>
<td>lnlaplaceden((b,m,x))</td>
<td>the natural logarithm of the density of the Laplace distribution with mean (m) and scale parameter (b)</td>
</tr>
<tr>
<td>lnmvnormalden((M,V,X))</td>
<td>the natural logarithm of the multivariate normal density</td>
</tr>
<tr>
<td>lnnormal((z))</td>
<td>the natural logarithm of the cumulative standard normal distribution</td>
</tr>
<tr>
<td>lnnormalden((z))</td>
<td>the natural logarithm of the standard normal density, (N(0,1))</td>
</tr>
<tr>
<td>lnnormalden((x,\mu,\sigma))</td>
<td>the natural logarithm of the normal density with mean (\mu) and standard deviation (\sigma)</td>
</tr>
<tr>
<td>lnnormalden((x,\mu,\sigma))</td>
<td>the natural logarithm of the normal density with mean (\mu) and standard deviation (\sigma), (N(\mu,\sigma^2))</td>
</tr>
<tr>
<td>lnwishartden((df,V,X))</td>
<td>the natural logarithm of the density of the Wishart distribution; missing if (df \leq n - 1)</td>
</tr>
<tr>
<td>logistic((x))</td>
<td>the cumulative logistic distribution with mean 0 and standard deviation (\pi/\sqrt{3})</td>
</tr>
<tr>
<td>logistic((s,x))</td>
<td>the cumulative logistic distribution with mean 0, scale (s), and standard deviation (s\pi/\sqrt{3})</td>
</tr>
<tr>
<td>logistic((m,s,x))</td>
<td>the cumulative logistic distribution with mean (m), scale (s), and standard deviation (s\pi/\sqrt{3})</td>
</tr>
<tr>
<td>logisticden((x))</td>
<td>the density of the logistic distribution with mean 0 and standard deviation (\pi/\sqrt{3})</td>
</tr>
<tr>
<td>logisticden((s,x))</td>
<td>the density of the logistic distribution with mean 0, scale (s), and standard deviation (s\pi/\sqrt{3})</td>
</tr>
<tr>
<td>logisticden((m,s,x))</td>
<td>the density of the logistic distribution with mean (m), scale (s), and standard deviation (s\pi/\sqrt{3})</td>
</tr>
<tr>
<td>logistictail((x))</td>
<td>the reverse cumulative logistic distribution with mean 0 and standard deviation (\pi/\sqrt{3})</td>
</tr>
<tr>
<td>logistictail((s,x))</td>
<td>the reverse cumulative logistic distribution with mean 0, scale (s), and standard deviation (s\pi/\sqrt{3})</td>
</tr>
<tr>
<td>logistictail((m,s,x))</td>
<td>the reverse cumulative logistic distribution with mean (m), scale (s), and standard deviation (s\pi/\sqrt{3})</td>
</tr>
<tr>
<td>nbetaden((a,b,np,x))</td>
<td>the probability density function of the noncentral beta distribution; 0 if (x < 0) or (x > 1)</td>
</tr>
<tr>
<td>nbinomial((n,k,p))</td>
<td>the cumulative probability of the negative binomial distribution</td>
</tr>
<tr>
<td>nbinomialp((n,k,p))</td>
<td>the negative binomial probability</td>
</tr>
<tr>
<td>nbinomialtail((n,k,p))</td>
<td>the reverse cumulative probability of the negative binomial distribution</td>
</tr>
<tr>
<td>nchi2((df,np,x))</td>
<td>the cumulative noncentral (\chi^2) distribution; 0 if (x < 0)</td>
</tr>
<tr>
<td>nchi2den((df,np,x))</td>
<td>the probability density of the noncentral (\chi^2) distribution; 0 if (x < 0)</td>
</tr>
<tr>
<td>nchi2tail((df,np,x))</td>
<td>the reverse cumulative (upper tail or survivor) noncentral (\chi^2) distribution; 1 if (x < 0)</td>
</tr>
</tbody>
</table>
14 Functions by category

\[nF(df_1, df_2, np, f) \]
the cumulative noncentral \(F \) distribution with \(df_1 \) numerator and \(df_2 \) denominator degrees of freedom and noncentrality parameter \(np; 0 \) if \(f < 0 \)

\[nFden(df_1, df_2, np, f) \]
the probability density function of the noncentral \(F \) distribution with \(df_1 \) numerator and \(df_2 \) denominator degrees of freedom and noncentrality parameter \(np; 0 \) if \(f < 0 \)

\[nFtail(df_1, df_2, np, f) \]
the reverse cumulative (upper tail or survivor) noncentral \(F \) distribution with \(df_1 \) numerator and \(df_2 \) denominator degrees of freedom and noncentrality parameter \(np; 1 \) if \(f < 0 \)

\[nibeta(a, b, np, x) \]
the cumulative noncentral beta distribution; \(0 \) if \(x < 0 \); or \(1 \) if \(x > 1 \)

\[normal(z) \]
the cumulative standard normal distribution

\[normalden(z) \]
the standard normal density, \(N(0,1) \)

\[normalden(x, \sigma) \]
the normal density with mean \(0 \) and standard deviation \(\sigma \)

\[normalden(x, \mu, \sigma) \]
the normal density with mean \(\mu \) and standard deviation \(\sigma \), \(N(\mu, \sigma^2) \)

\[npnchi2(df, x, p) \]
the noncentrality parameter, \(np \), for noncentral \(\chi^2 \): if \(nchi2(df, x, p) = p \), then \(npnchi2(df, x, p) = np \)

\[npnF(df_1, df_2, f, p) \]
the noncentrality parameter, \(np \), for the noncentral \(F \) if \(nF(df_1, df_2, np, f) = p \), then \(npnF(df_1, df_2, f, p) = np \)

\[npnt(df, t, p) \]
the noncentrality parameter, \(np \), for the noncentral Student’s \(t \) distribution: if \(npnt(df, np, t) = p \), then \(npnt(df, t, np) = p \)

\[nt(df, np, t) \]
the cumulative noncentral Student’s \(t \) distribution with \(df \) degrees of freedom and noncentrality parameter \(np \)

\[ntden(df, np, t) \]
the probability density function of the noncentral Student’s \(t \) distribution with \(df \) degrees of freedom and noncentrality parameter \(np \)

\[ntntail(df, np, t) \]
the reverse cumulative (upper tail or survivor) noncentral Student’s \(t \) distribution with \(df \) degrees of freedom and noncentrality parameter \(np \)

\[poisson(m, k) \]
the probability of observing \(\text{floor}(k) \) or fewer outcomes that are distributed as Poisson with mean \(m \)

\[poissonp(m, k) \]
the probability of observing \(\text{floor}(k) \) outcomes that are distributed as Poisson with mean \(m \)

\[poissontail(m, k) \]
the probability of observing \(\text{floor}(k) \) or more outcomes that are distributed as Poisson with mean \(m \)

\[t(df, t) \]
the cumulative Student’s \(t \) distribution with \(df \) degrees of freedom

\[tden(df, t) \]
the probability density function of Student’s \(t \) distribution

\[ttail(df, t) \]
the reverse cumulative (upper tail or survivor) Student’s \(t \) distribution; the probability \(T > t \)

\[tukeyprob(k, df, x) \]
the cumulative Tukey’s Studentized range distribution with \(k \) ranges and \(df \) degrees of freedom; \(0 \) if \(x < 0 \)

\[weibull(a, b, x) \]
the cumulative Weibull distribution with shape \(a \) and scale \(b \)

\[weibull(a, b, g, x) \]
the cumulative Weibull distribution with shape \(a \), scale \(b \), and location \(g \)

\[weibullden(a, b, x) \]
the probability density function of the Weibull distribution with shape \(a \) and scale \(b \)

\[weibullden(a, b, g, x) \]
the probability density function of the Weibull distribution with shape \(a \), scale \(b \), and location \(g \)
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>weibullph(a, b, x)</code></td>
<td>the cumulative Weibull (proportional hazards) distribution with shape (a) and scale (b)</td>
</tr>
<tr>
<td><code>weibullph(a, b, g, x)</code></td>
<td>the cumulative Weibull (proportional hazards) distribution with shape (a), scale (b), and location (g)</td>
</tr>
<tr>
<td><code>weibullphden(a, b, x)</code></td>
<td>the probability density function of the Weibull (proportional hazards) distribution with shape (a) and scale (b)</td>
</tr>
<tr>
<td><code>weibullphden(a, b, g, x)</code></td>
<td>the probability density function of the Weibull (proportional hazards) distribution with shape (a), scale (b), and location (g)</td>
</tr>
<tr>
<td><code>weibullphtail(a, b, x)</code></td>
<td>the reverse cumulative Weibull (proportional hazards) distribution with shape (a) and scale (b)</td>
</tr>
<tr>
<td><code>weibullphtail(a, b, g, x)</code></td>
<td>the reverse cumulative Weibull (proportional hazards) distribution with shape (a), scale (b), and location (g)</td>
</tr>
<tr>
<td><code>weibulltail(a, b, x)</code></td>
<td>the reverse cumulative Weibull distribution with shape (a) and scale (b)</td>
</tr>
<tr>
<td><code>weibulltail(a, b, g, x)</code></td>
<td>the reverse cumulative Weibull distribution with shape (a), scale (b), and location (g)</td>
</tr>
</tbody>
</table>

String functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>abbrev(s, n)</code></td>
<td>name (s), abbreviated to a length of (n)</td>
</tr>
<tr>
<td><code>char(n)</code></td>
<td>the character corresponding to ASCII or extended ASCII code (n); "" if (n) is not in the domain</td>
</tr>
<tr>
<td><code>collatorlocale(loc, type)</code></td>
<td>the most closely related locale supported by ICU from (loc) if (type) is 1; the actual locale where the collation data comes from if (type) is 2</td>
</tr>
<tr>
<td><code>collatorversion(loc)</code></td>
<td>the version string of a collator based on locale (loc)</td>
</tr>
<tr>
<td><code>indexnot(s1, s2)</code></td>
<td>the position in ASCII string (s1) of the first character of (s1) not found in ASCII string (s2), or 0 if all characters of (s1) are found in (s2)</td>
</tr>
<tr>
<td><code>plural(n, s)</code></td>
<td>the plural of (s) if (n \neq \pm 1)</td>
</tr>
<tr>
<td><code>plural(n, s1, s2)</code></td>
<td>the plural of (s1), as modified by or replaced with (s2), if (n \neq \pm 1)</td>
</tr>
<tr>
<td><code>real(s)</code></td>
<td>(s) converted to numeric or missing</td>
</tr>
<tr>
<td><code>regexm(s, re)</code></td>
<td>performs a match of a regular expression and evaluates to 1 if regular expression (re) is satisfied by the ASCII string (s); otherwise, 0</td>
</tr>
<tr>
<td><code>regexr(s1, re, s2)</code></td>
<td>replaces the first substring within ASCII string (s1) that matches (re) with ASCII string (s2) and returns the resulting string</td>
</tr>
<tr>
<td><code>regexs(n)</code></td>
<td>subexpression (n) from a previous <code>regexm()</code> match, where (0 \leq n < 10)</td>
</tr>
<tr>
<td><code>soundex(s)</code></td>
<td>the soundex code for a string, (s)</td>
</tr>
<tr>
<td><code>soundex_nara(s)</code></td>
<td>the U.S. Census soundex code for a string, (s)</td>
</tr>
<tr>
<td><code>strcat(s1, s2)</code></td>
<td>there is no <code>strcat()</code> function; instead the addition operator is used to concatenate strings</td>
</tr>
<tr>
<td><code>strdup(s1, n)</code></td>
<td>there is no <code>strdup()</code> function; instead the multiplication operator is used to create multiple copies of strings</td>
</tr>
<tr>
<td><code>string(n)</code></td>
<td>a synonym for <code>strofreal(n)</code></td>
</tr>
<tr>
<td><code>string(n, s)</code></td>
<td>a synonym for <code>strofreal(n, s)</code></td>
</tr>
</tbody>
</table>
strtrim(s)

s with multiple, consecutive internal blanks (ASCII space character `\texttt{char(32)}`) collapsed to one blank

strlen(s)

the number of characters in ASCII s or length in bytes

strlower(s)

lowercase ASCII characters in string s

strltrim(s)

s without leading blanks (ASCII space character `\texttt{char(32)}`)

strmatch(s1, s2)

1 if s_1 matches the pattern s_2; otherwise, 0

strofreal(n)

n converted to a string

strofreal(n, s)

n converted to a string using the specified display format

strpos(s1, s2)

the position in s_1 at which s_2 is first found; otherwise, 0

strproper(s)

a string with the first ASCII letter and any other letters immediately following characters that are not letters capitalized; all other ASCII letters converted to lowercase

strreverse(s)

reverses the ASCII string s

strrpos(s1, s2)

the position in s_1 at which s_2 is last found; otherwise, 0

strrtrim(s)

s without trailing blanks (ASCII space character `\texttt{char(32)}`); equivalent to `\texttt{strltrim(strrtrim(s))}`

strupper(s)

uppercase ASCII characters in string s

subinstr(s1, s2, s3, n)

s_1, where the first n occurrences in s_1 of s_2 have been replaced with s_3

subinword(s1, s2, s3, n)

s_1, where the first n occurrences in s_1 of s_2 as a word have been replaced with s_3

substr(s, n1, n2)

the substring of s, starting at n_1, for a length of n_2

tobyes(s[, n])

escaped decimal or hex digit strings of up to 200 bytes of s

uchar(n)

the Unicode character corresponding to Unicode code point n or an empty string if n is beyond the Unicode code-point range

udstrlen(s)

the number of display columns needed to display the Unicode string s in the Stata Results window

udsubstr(s, n1, n2)

the Unicode substring of s, starting at character n_1, for n_2 display columns

uisdigit(s)

1 if the first Unicode character in s is a Unicode decimal digit; otherwise, 0

uisletter(s)

1 if the first Unicode character in s is a Unicode letter; otherwise, 0

ustrcompare(s1, s2[, loc])

compares two Unicode strings

ustrcompareex(s1, s2, loc, case, cslv, norm, num, alt, fr)

compares two Unicode strings

ustrfix(s[, rep])

replaces each invalid UTF-8 sequence with a Unicode character

ustrfrom(s, enc, mode)

converts the string s in encoding `\texttt{enc}` to a UTF-8 encoded Unicode string

ustrinvalidcnt(s)

the number of invalid UTF-8 sequences in s

ustrleft(s, n)

the first n Unicode characters of the Unicode string s

ustrlen(s)

the number of characters in the Unicode string s

ustrlower(s[, loc])

lowercase all characters of Unicode string s under the given locale \texttt{loc}
ustrltrim(s) removes the leading Unicode whitespace characters and blanks from the Unicode string s

ustrnormalize(s,norm) normalizes Unicode string s to one of the five normalization forms specified by norm

ustrpos(s1,s2[,n]) the position in s1 at which s2 is first found; otherwise, 0

ustrregexm(s,re[,noc]) performs a match of a regular expression and evaluates to 1 if regular expression re is satisfied by the Unicode string s; otherwise, 0

ustrregexra(s1,re,s2[,noc]) replaces all substrings within the Unicode string s1 that match re with s2 and returns the resulting string

ustrregexrf(s1,re,s2[,noc]) replaces the first substring within the Unicode string s1 that matches re with s2 and returns the resulting string

ustrregexs(n) subexpression n from a previous ustrregexm() match

ustrreverse(s) reverses the Unicode string s

ustrtitle(s[,loc]) a string with the first characters of Unicode words titlecased and other characters lowercased

ustrto(s,enc,mode) converts the Unicode string s in UTF-8 encoding to a string in encoding enc

ustrtohex(s[,n]) escaped hex digit string of s up to 200 Unicode characters

ustrtoname(s[,p]) string s translated into a Stata name

ustrtrim(s) removes leading and trailing Unicode whitespace characters and blanks from the Unicode string s

ustrunescape(s) the Unicode string corresponding to the escaped sequences of s

ustrupper(s[,loc]) uppercase all characters in string s under the given locale loc

ustrword(s,n[,noc]) the nth Unicode word in the Unicode string s

ustrwordcount(s[,loc]) the number of nonempty Unicode words in the Unicode string s

usubinstr(s1,s2,s3,n) replaces the first n occurrences of the Unicode string s2 with the Unicode string s3 in s1

usubstr(s,n1,n2) the Unicode substring of s, starting at n1, for a length of n2

word(s,n) the nth word in s; missing (""") if n is missing

wordbreaklocale(loc,type) the most closely related locale supported by ICU from loc if type is 1, the actual locale where the word-boundary analysis data come from if type is 2; or an empty string is returned for any other type

wordcount(s) the number of words in s
Trigonometric functions

\[
\begin{align*}
\text{acos}(x) & \quad \text{the radian value of the arccosine of } x \\
\text{acosh}(x) & \quad \text{the inverse hyperbolic cosine of } x \\
\text{asin}(x) & \quad \text{the radian value of the arcsine of } x \\
\text{asinh}(x) & \quad \text{the inverse hyperbolic sine of } x \\
\text{atan}(x) & \quad \text{the radian value of the arctangent of } x \\
\text{atan2}(y, x) & \quad \text{the radian value of the arctangent of } y/x, \text{ where the signs of the parameters } y \text{ and } x \text{ are used to determine the quadrant of the answer} \\
\text{atanh}(x) & \quad \text{the inverse hyperbolic tangent of } x \\
\text{cos}(x) & \quad \text{the cosine of } x, \text{ where } x \text{ is in radians} \\
\text{cosh}(x) & \quad \text{the hyperbolic cosine of } x \\
\text{sin}(x) & \quad \text{the sine of } x, \text{ where } x \text{ is in radians} \\
\text{sinh}(x) & \quad \text{the hyperbolic sine of } x \\
\text{tan}(x) & \quad \text{the tangent of } x, \text{ where } x \text{ is in radians} \\
\text{tanh}(x) & \quad \text{the hyperbolic tangent of } x \\
\end{align*}
\]

Also see

[FN] Functions by name
[D] egen — Extensions to generate
[D] generate — Create or change contents of variable
[M-4] intro — Categorical guide to Mata functions
[U] 13.3 Functions
Functions by name

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>abbrev(s, n)</code></td>
<td>name s, abbreviated to a length of n</td>
</tr>
<tr>
<td><code>abs(x)</code></td>
<td>the absolute value of x</td>
</tr>
<tr>
<td><code>acos(x)</code></td>
<td>the radian value of the arccosine of x</td>
</tr>
<tr>
<td><code>acosh(x)</code></td>
<td>the inverse hyperbolic cosine of x</td>
</tr>
<tr>
<td><code>asin(x)</code></td>
<td>the radian value of the arcsine of x</td>
</tr>
<tr>
<td><code>asinh(x)</code></td>
<td>the inverse hyperbolic sine of x</td>
</tr>
<tr>
<td><code>atan(x)</code></td>
<td>the radian value of the arctangent of x</td>
</tr>
<tr>
<td><code>atan2(y, x)</code></td>
<td>the radian value of the arctangent of y/x, where the signs of the parameters y and x are used to determine the quadrant of the answer</td>
</tr>
<tr>
<td><code>atanh(x)</code></td>
<td>the inverse hyperbolic tangent of x</td>
</tr>
<tr>
<td><code>autocode(x, n, x0, x1)</code></td>
<td>partitions the interval from x0 to x1 into n equal-length intervals and returns the upper bound of the interval that contains x</td>
</tr>
<tr>
<td><code>betaden(a, b, x)</code></td>
<td>the probability density of the beta distribution, where a and b are the shape parameters; 0 if x < 0 or x > 1</td>
</tr>
<tr>
<td><code>binomial(n, k, \theta)</code></td>
<td>the probability of observing floor(k) or fewer successes in floor(n) trials when the probability of a success on one trial is (\theta); 0 if (k < 0); or 1 if (k > n)</td>
</tr>
<tr>
<td><code>binomialp(n, k, p)</code></td>
<td>the probability of observing floor(k) successes in floor(n) trials when the probability of a success on one trial is p</td>
</tr>
<tr>
<td><code>binomialtail(n, k, \theta)</code></td>
<td>the probability of observing floor(k) or more successes in floor(n) trials when the probability of a success on one trial is (\theta); 1 if (k < 0); or 0 if (k > n)</td>
</tr>
<tr>
<td><code>binormal(h, k, \rho)</code></td>
<td>the joint cumulative distribution (\Phi(h, k, \rho)) of bivariate normal with correlation (\rho)</td>
</tr>
<tr>
<td><code>bofd("cal", e_d)</code></td>
<td>the (e_b) business date corresponding to (e_d)</td>
</tr>
<tr>
<td><code>byteorder()</code></td>
<td>1 if your computer stores numbers by using a hilo byte order and evaluates to 2 if your computer stores numbers by using a lohi byte order</td>
</tr>
<tr>
<td><code>c(name)</code></td>
<td>the value of the system or constant result c(name) (see [P] creturn)</td>
</tr>
<tr>
<td><code>_caller()</code></td>
<td>version of the program or session that invoked the currently running program; see [P] version</td>
</tr>
<tr>
<td><code>cauchy(a, b, x)</code></td>
<td>the cumulative Cauchy distribution with location parameter a and scale parameter b</td>
</tr>
<tr>
<td><code>cauchyden(a, b, x)</code></td>
<td>the probability density of the Cauchy distribution with location parameter a and scale parameter b</td>
</tr>
<tr>
<td><code>cauchytail(a, b, x)</code></td>
<td>the reverse cumulative (upper tail or survivor) Cauchy distribution with location parameter a and scale parameter b</td>
</tr>
<tr>
<td><code>Cdhms(e_d, h, m, s)</code></td>
<td>the (e_d)C datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to (e_d), h, m, s</td>
</tr>
<tr>
<td><code>ceil(x)</code></td>
<td>the unique integer n such that (n - 1 < x \leq n); x (not “.”) if x is missing, meaning that ceil(.a) = .a</td>
</tr>
</tbody>
</table>
char(n) the character corresponding to ASCII or extended ASCII code n; "" if n is not in the domain
chi2(df, x) the cumulative χ^2 distribution with df degrees of freedom; 0 if $x < 0$
chi2den(df, x) the probability density of the chi-squared distribution with df degrees of freedom; 0 if $x < 0$
chi2tail(df, x) the reverse cumulative (upper tail or survivor) χ^2 distribution with df degrees of freedom; 1 if $x < 0$
Chms(h, m, s) the e_{tc} datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to h, m, s on 01jan1960
chop(x, ϵ) round(x) if abs($x - \text{round}(x)$) < ϵ; otherwise, x; or x if x is missing
cholesky(M) the Cholesky decomposition of the matrix: if $R = \text{cholesky}(S)$, then $RR^T = S$
clip(x, a, b) x if $a < x < b$, b if $x \geq b$, a if $x \leq a$, or missing if x is missing or if $a > b$; x if x is missing
Clock(s1, s2[, Y]) the e_{tc} datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to s1 based on s2 and Y
clock(s1, s2[, Y]) the e_{tc} datetime (ms. since 01jan1960 00:00:00.000) corresponding to s1 based on s2 and Y
cloglog(x) the complementary log-log of x
Cmdyhms(M, D, Y, h, m, s) the e_{tc} datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to M, D, Y, h, m, s
Cofc(e_{tc}) the e_{tc} datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of e_{tc} (ms. without leap seconds since 01jan1960 00:00:00.000)
cofC(e_{tc}) the e_{tc} datetime (ms. without leap seconds since 01jan1960 00:00:00.000) of e_{tc} (ms. with leap seconds since 01jan1960 00:00:00.000)
Cofd(e_{d}) the e_{tc} datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of date e_{d} at time 00:00:00.000
cofd(e_{d}) the e_{tc} datetime (ms. since 01jan1960 00:00:00.000) of date e_{d} at time 00:00:00.000
coleqnumb(M, s) the equation number of M associated with column equation s; missing if the column equation cannot be found
collatorlocale(loc, type) the most closely related locale supported by ICU from loc if type is 1; the actual locale where the collation data comes from if type is 2
collatorversion(loc) the version string of a collator based on locale loc
colnfreeparms(M, s) the number of free parameters in columns of M
colnmb(M, s) the column number of M associated with column name s; missing if the column cannot be found
colsof(M) the number of columns of M
comb(n, k) the combinatorial function $n!/[k!(n-k)!]$
cond(x, a, b[, c]) a if x is true and nonmissing, b if x is false, and c if x is missing; a if c is not specified and x evaluates to missing
corr(M) the correlation matrix of the variance matrix
cos(x)
the cosine of x, where x is in radians

cosh(x)
the hyperbolic cosine of x

daily(s_1, s_2[, Y])
a synonym for date(s_1, s_2[, Y])

date(s_1, s_2[, Y])
the e_d date (days since 01jan1960) corresponding to s_1 based on s_2 and Y

day(e_d)
the numeric day of the month corresponding to e_d

det(M)
the determinant of matrix M

dgammapda(a, x)
\frac{\partial P(a, x)}{\partial a}, where P(a, x) = \text{gammap}(a, x); 0 if x < 0

dgammapdada(a, x)
\frac{\partial^2 P(a, x)}{\partial a^2}, where P(a, x) = \text{gammap}(a, x); 0 if x < 0

dgammapdadx(a, x)
\frac{\partial P(a, x)}{\partial a}, where P(a, x) = \text{gammap}(a, x); 0 if x < 0

dgammapdax(a, x)
\frac{\partial P(a, x)}{\partial x}, where P(a, x) = \text{gammap}(a, x); 0 if x < 0

dgammadxdx(a, x)
the e_tc date (ms. since 01jan1960 00:00:00.000) corresponding to e_d, h, m, and s

dhms(e_d, h, m, s)
the square, diagonal matrix created from the row or column vector

diag(v)
the number of zeros on the diagonal of M

diag0cnt(M)
the digamma() function, \(d\ln\Gamma(x)/dx \)
dofb(e_b, "cal")
the e_d date (days since 01jan1960) of datetime e_b
dofC(e_tC)
the e_d date (days since 01jan1960) of datetime e_tC (ms. with leap seconds since 01jan1960 00:00:00.000)
dofc(e_tC)
the e_d date (days since 01jan1960) of datetime e_tC (ms. since 01jan1960 00:00:00.000)
dofh(e_h)
the e_d date (days since 01jan1960) of the start of half-year e_h
dofm(e_m)
the e_d date (days since 01jan1960) of the start of month e_m
dofq(e_q)
the e_d date (days since 01jan1960) of the start of quarter e_q
dofw(e_w)
the e_d date (days since 01jan1960) of the start of week e_w
dofy(e_y)
the e_d date (days since 01jan1960) of 01jan in year e_y
dow(e_d)
the numeric day of the week corresponding to date e_d; 0 = Sunday, 1 = Monday, \ldots, 6 = Saturday
doy(e_d)
the numeric day of the year corresponding to date e_d
dunnettprob(k, df, x)
the cumulative multiple range distribution that is used in Dunnett’s multiple-comparison method with k ranges and df degrees of freedom; 0 if x < 0

e(name)
the value of stored result e(name); see [U] 18.8 Accessing results calculated by other programs
e1(s, i, j)
s[floor(i),floor(j)], the i, j element of the matrix named s; missing if i or j are out of range or if matrix s does not exist
e(sample)
1 if the observation is in the estimation sample and 0 otherwise
epsdouble()
the machine precision of a double-precision number
epsfloat()
the machine precision of a floating-point number
exp(x)
the exponential function \(e^x \)
exponential(b, x)
the cumulative exponential distribution with scale b
\textbf{22 Functions by name}

\begin{itemize}
\item \texttt{exponentialden(b,x)} - the probability density function of the exponential distribution with scale \(b\).
\item \texttt{exponentialtail(b,x)} - the reverse cumulative exponential distribution with scale \(b\).
\item \texttt{F(df1,df2,f)} - the cumulative \(F\) distribution with \(df1\) numerator and \(df2\) denominator degrees of freedom: \(F(df1,df2,f) = \int_0^f F\text{den}(df1,df2,t) \, dt\); 0 if \(f < 0\).
\item \texttt{Fden(df1,df2,f)} - the probability density function of the \(F\) distribution with \(df1\) numerator and \(df2\) denominator degrees of freedom; 0 if \(f < 0\).
\item \texttt{fileexists(f)} - 1 if the file specified by \(f\) exists; otherwise, 0.
\item \texttt{fileread(f)} - the contents of the file specified by \(f\).
\item \texttt{filereaderror(f)} - 0 or positive integer, said value having the interpretation of a return code.
\item \texttt{fwrite(f,s[,r])} - writes the string specified by \(s\) to the file specified by \(f\) and returns the number of bytes in the resulting file.
\item \texttt{float(x)} - the value of \(x\) rounded to float precision.
\item \texttt{floor(x)} - the unique integer \(n\) such that \(n \leq x < n + 1\); \(x\) (not “.”) if \(x\) is missing, meaning that \(\text{floor}(\text{.a}) = \text{.a}\).
\item \texttt{fmtwidth(fmtstr)} - the output length of the %fmt contained in \(fmtstr\); missing if \(fmtstr\) does not contain a valid %fmt.
\item \texttt{Ftail(df1,df2,f)} - the reverse cumulative (upper tail or survivor) \(F\) distribution with \(df1\) numerator and \(df2\) denominator degrees of freedom; 1 if \(f < 0\).
\item \texttt{gammaden(a,b,g,x)} - the probability density function of the gamma distribution; 0 if \(x < g\).
\item \texttt{gammap(a,x)} - the cumulative gamma distribution with shape parameter \(a\); 0 if \(x < 0\).
\item \texttt{gammapitail(a,x)} - the reverse cumulative (upper tail or survivor) gamma distribution with shape parameter \(a\); 1 if \(x < 0\).
\item \texttt{get(systemname)} - a copy of Stata internal system matrix \(systemname\).
\item \texttt{hadamard(M,N)} - a matrix whose \(i, j\) element is \(M[i,j] \cdot N[i,j]\) (if \(M\) and \(N\) are not the same size, this function reports a conformability error).
\item \texttt{halfyear(e_d)} - the numeric half of the year corresponding to date \(e_d\).
\item \texttt{halfyearly(s1,s2[,Y])} - the \(e_h\) half-yearly date (half-years since 1960h1) corresponding to \(s_1\) based on \(s_2\) and \(Y\); \(Y\) specifies topyear; see \texttt{date()}.
\item \texttt{has_eprop(name)} - 1 if \(name\) appears as a word in e(properties); otherwise, 0.
\item \texttt{hh(e_tc)} - the hour corresponding to datetime \(e_{tc}\) (ms. since 01jan1960 00:00:00.000).
\item \texttt{hhC(e_TC)} - the hour corresponding to datetime \(e_{TC}\) (ms. with leap seconds since 01jan1960 00:00:00.000).
\item \texttt{hms(h,m,s)} - the \(e_{tc}\) datetime (ms. since 01jan1960 00:00:00.000) corresponding to \(h, m, s\) on 01jan1960.
\item \texttt{hofd(e_d)} - the \(e_h\) half-yearly date (half years since 1960h1) containing date \(e_d\) ms/3,600,000.
\item \texttt{hours(ms)} - the cumulative probability of the hypergeometric distribution.
\item \texttt{hypergeometricc(N,K,n,k)} - the cumulative probability of \(k\) successes out of a sample of size \(n\), from a population of size \(N\) containing \(K\) elements that have the attribute of interest.
\end{itemize}
I(n) \quad \text{an } n \times n \text{ identity matrix if } n \text{ is an integer; otherwise, a round}(n) \times \text{round}(n) \text{ identity matrix}

ibeta(a,b,x) \quad \text{the cumulative beta distribution with shape parameters } a \text{ and } b; 0 \text{ if } x < 0; \text{ or } 1 \text{ if } x > 1

ibetatail(a,b,x) \quad \text{the reverse cumulative (upper tail or survivor) beta distribution with shape parameters } a \text{ and } b; 1 \text{ if } x < 0; \text{ or } 0 \text{ if } x > 1

igaussian(m,a,x) \quad \text{the cumulative inverse Gaussian distribution with mean } m \text{ and shape parameter } a; 0 \text{ if } x \leq 0

igaussianden(m,a,x) \quad \text{the probability density of the inverse Gaussian distribution with mean } m \text{ and shape parameter } a; 0 \text{ if } x \leq 0

igaussiantail(m,a,x) \quad \text{the reverse cumulative (upper tail or survivor) inverse Gaussian distribution with mean } m \text{ and shape parameter } a; 1 \text{ if } x \leq 0

indexnot(s_1,s_2) \quad \text{the position in ASCII string } s_1 \text{ of the first character of } s_1 \text{ not found in } s_2; \text{ or } 0 \text{ if all characters of } s_1 \text{ are found in } s_2

inlist(z,a,b,...) \quad 1 \text{ if } z \text{ is a member of the remaining arguments; otherwise, } 0

inrange(z,a,b) \quad 1 \text{ if it is known that } a \leq z \leq b; \text{ otherwise, } 0

int(x) \quad \text{the integer obtained by truncating } x \text{ toward } 0 \text{ (thus, int}(5.2) = 5 \text{ and } \text{int}(-5.8) = -5); \text{ x (not “…” if } x \text{ is missing, meaning that } \text{int}(\text{.a}) = .a

inv(M) \quad \text{the inverse of the matrix } M

invbinomial(n,k,p) \quad \text{the inverse of the cumulative binomial; that is, } \theta \text{ (} \theta = \text{probability of success on one trial) such that the probability of observing floor}(k) \text{ or fewer successes in floor}(n) \text{ trials is } p

invbinomialtail(n,k,p) \quad \text{the inverse of the right cumulative binomial; that is, } \theta \text{ (} \theta = \text{probability of success on one trial) such that the probability of observing floor}(k) \text{ or more successes in floor}(n) \text{ trials is } p

invcauchy(a,b,p) \quad \text{the inverse of cauchy(): if cauchy}(a,b,x) = p, \text{ then } \text{invcauchy}(a,b,p) = x

invcauchytail(a,b,p) \quad \text{the inverse of cauchytail(): if cauchytail}(a,b,x) = p, \text{ then } \text{invcauchytail}(a,b,p) = x

invchi2(df,p) \quad \text{the inverse of chi2(): if chi2}(df,x) = p, \text{ then } \text{invchi2}(df,p) = x

invchi2tail(df,p) \quad \text{the inverse of chi2tail(): if chi2tail}(df,x) = p, \text{ then } \text{invchi2tail}(df,p) = x

invcloglog(x) \quad \text{the inverse of the complementary log-log function of } x

invdunnettprob(k,df,p) \quad \text{the inverse cumulative multiple range distribution that is used in Dunnett’s multiple-comparison method with } k \text{ ranges and } df \text{ degrees of freedom}

invexponential(b,p) \quad \text{the inverse cumulative exponential distribution with scale } b; \text{ if exponential}(b,x) = p, \text{ then } \text{invexponential}(b,p) = x

invexponentialtail(b,p) \quad \text{the inverse reverse cumulative exponential distribution with scale } b; \text{ if exponentialtail}(b,x) = p, \text{ then } \text{invexponentialtail}(b,p) = x

invF(df_1,df_2,p) \quad \text{the inverse cumulative } F \text{ distribution: if } F(df_1,df_2,f) = p, \text{ then } \text{invF}(df_1,df_2,p) = f

invFtail(df_1,df_2,p) \quad \text{the inverse reverse cumulative (upper tail or survivor) } F \text{ distribution: if } Ftail(df_1,df_2,f) = p, \text{ then } \text{invFtail}(df_1,df_2,p) = f
invgammmap(a, p)
the inverse cumulative gamma distribution: if \(\operatorname{gammmap}(a, x) = p \), then \(\operatorname{invgammmap}(a, p) = x \)

invgammmaptail(a, p)
the inverse reverse cumulative (upper tail or survivor) gamma distribution: if \(\operatorname{gammmap}(a, x) = p \), then \(\operatorname{invgammmap}(a, p) = x \)

invibeta(a, b, p)
the inverse cumulative beta distribution: if \(\operatorname{ibeta}(a, b, x) = p \), then \(\operatorname{invibeta}(a, b, p) = x \)

invibetatail(a, b, p)
the inverse reverse cumulative (upper tail or survivor) beta distribution: if \(\operatorname{ibetatail}(a, b, x) = p \), then \(\operatorname{invibetatail}(a, b, p) = x \)

invigaussian(m, a, p)
the inverse of \(\operatorname{igaussian}(m, a, x) = p \), then \(\operatorname{invigaussian}(m, a, p) = x \)

invigaussiantail(m, a, p)
the inverse of \(\operatorname{igaussiantail}(m, a, x) = p \), then \(\operatorname{invigaussiantail}(m, a, p) = x \)

invlaplace(m, b, p)
the inverse of \(\operatorname{laplace}(m, b, x) = p \), then \(\operatorname{invlaplace}(m, b, p) = x \)

invlaplacetail(m, b, p)
the inverse of \(\operatorname{laplacetail}(m, b, x) = p \), then \(\operatorname{invlaplacetail}(m, b, p) = x \)

invlogistic(p)
the inverse cumulative logistic distribution: if \(\operatorname{logistic}(x) = p \), then \(\operatorname{invlogistic}(p) = x \)

invlogistic(s, p)
the inverse cumulative logistic distribution: if \(\operatorname{logistic}(s, x) = p \), then \(\operatorname{invlogistic}(s, p) = x \)

invlogistic(m, s, p)
the inverse cumulative logistic distribution: if \(\operatorname{logistic}(m, s, x) = p \), then \(\operatorname{invlogistic}(m, s, p) = x \)

invlogistictail(p)
the inverse reverse cumulative logistic distribution: if \(\operatorname{logistictail}(x) = p \), then \(\operatorname{invlogistictail}(p) = x \)

invlogistictail(s, p)
the inverse cumulative logistic distribution: if \(\operatorname{logistic}(s, x) = p \), then \(\operatorname{invlogistictail}(s, p) = x \)

invlogistictail(m, s, p)
the inverse cumulative logistic distribution: if \(\operatorname{logistic}(m, s, x) = p \), then \(\operatorname{invlogistictail}(m, s, p) = x \)

invlogit(x)
the inverse of the logit function of \(x \)

invnbinomial(n, k, q)
the value of the negative binomial parameter, \(p \), such that \(q = \operatorname{nbinomial}(n, k, p) \)

invnbinomialtail(n, k, q)
the value of the negative binomial parameter, \(p \), such that \(q = \operatorname{nbinomialtail}(n, k, p) \)

invnchi2(df, np, p)
the inverse cumulative noncentral \(\chi^2 \) distribution: if \(\operatorname{nchi2}(df, np, x) = p \), then \(\operatorname{invnchi2}(df, np, p) = x \)

invnchi2tail(df, np, p)
the inverse reverse cumulative (upper tail or survivor) noncentral \(\chi^2 \) distribution: if \(\operatorname{nchi2tail}(df, np, x) = p \), then \(\operatorname{invnchi2tail}(df, np, p) = x \)

invnF(df1, df2, np, p)
the inverse cumulative noncentral \(F \) distribution: if \(\operatorname{nF}(df1, df2, np, f) = p \), then \(\operatorname{invnF}(df1, df2, np, p) = f \)

invnFtail(df1, df2, np, p)
the inverse reverse cumulative (upper tail or survivor) noncentral \(F \) distribution: if \(\operatorname{nFtail}(df1, df2, np, x) = p \), then \(\operatorname{invnFtail}(df1, df2, np, p) = x \)

invnbeta(a, b, np, p)
the inverse cumulative noncentral beta distribution: if \(\operatorname{nbeta}(a, b, np, x) = p \), then \(\operatorname{invnbeta}(a, b, np, p) = x \)
invnormal(p)
the inverse cumulative standard normal distribution: if normal(z) = p, then invnormal(p) = z

invnt(df, np, p)
the inverse cumulative noncentral Student’s t distribution: if nt(df, np, t) = p, then invnt(df, np, p) = t

invnttail(df, np, p)
the inverse reverse cumulative (upper tail or survivor) noncentral Student’s t distribution: if nttail(df, np, t) = p, then invnttail(df, np, p) = t

invpoisson(k, p)
the Poisson mean such that the cumulative Poisson distribution evaluated at k is p: if poisson(m, k) = p, then invpoisson(k, p) = m

invpoissantail(k, q)
the Poisson mean such that the reverse cumulative Poisson distribution evaluated at k is q: if poissontail(m, k) = q, then invpoissantail(k, q) = m

invsym(M)
the inverse of M if M is positive definite

invt(df, p)
the inverse cumulative Student’s t distribution: if t(df, t) = p, then invt(df, p) = t

invttail(df, p)
the inverse reverse cumulative (upper tail or survivor) Student’s t distribution: if ttail(df, t) = p, then invttail(df, p) = t

invtukeyprob(k, df, p)
the inverse cumulative Tukey’s Studentized range distribution with k ranges and df degrees of freedom

invweibull(a, b, p)
the inverse cumulative Weibull distribution with shape a and scale b: if weibull(a, b, x) = p, then invweibull(a, b, p) = x

invweibull(a, b, g, p)
the inverse cumulative Weibull distribution with shape a, scale b, and location g: if weibull(a, b, g, x) = p, then invweibull(a, b, g, p) = x

invweibullph(a, b, p)
the inverse cumulative Weibull (proportional hazards) distribution with shape a and scale b: if weibullph(a, b, x) = p, then invweibullph(a, b, p) = x

invweibullph(a, b, g, p)
the inverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g: if weibullph(a, b, g, x) = p, then invweibullph(a, b, g, p) = x

invweibullphtail(a, b, p)
the inverse reverse cumulative Weibull (proportional hazards) distribution with shape a and scale b: if weibullphtail(a, b, x) = p, then invweibullphtail(a, b, p) = x

invweibullphtail(a, b, g, p)
the inverse reverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g: if weibullphtail(a, b, g, x) = p, then invweibullphtail(a, b, g, p) = x

invweibulltail(a, b, p)
the inverse reverse cumulative Weibull distribution with shape a and scale b: if weibulltail(a, b, x) = p, then invweibulltail(a, b, p) = x

invweibulltail(a, b, g, p)
the inverse reverse cumulative Weibull distribution with shape a, scale b, and location g: if weibulltail(a, b, g, x) = p, then invweibulltail(a, b, g, p) = x

irecode(x, x_1, ..., x_n)
missing if x is missing or x_1, ..., x_n is not weakly increasing; 0 if x ≤ x_1; 1 if x_1 < x ≤ x_2; 2 if x_2 < x ≤ x_3; ...; n if x > x_n

issymmetric(M)
1 if the matrix is symmetric; otherwise, 0
Functions by name

$J(r, c, z)$
the $r \times c$ matrix containing elements z

$\text{laplace}(m, b, x)$
the cumulative Laplace distribution with mean m and scale parameter b

$\text{laplaceden}(m, b, x)$
the probability density of the Laplace distribution with mean m and scale parameter b

$\text{laplacetail}(m, b, x)$
the reverse cumulative (upper tail or survivor) Laplace distribution with mean m and scale parameter b

$\ln(x)$
the natural logarithm, $\ln(x)$

$\lncauchyden(a, b, x)$
the natural logarithm of the density of the Cauchy distribution with location parameter a and scale parameter b

$\lnfactorial(n)$
the natural log of n factorial $= \ln(n!)$

$\ln\text{gamma}(x)$
$\ln\{\Gamma(x)\}$

$\lnigammaden(a, b, x)$
the natural logarithm of the inverse gamma density, where a is the shape parameter and b is the scale parameter

$\ln\text{gaussianden}(m, a, x)$
the natural logarithm of the inverse Gaussian density with mean m and shape parameter a

$\ln\text{wishartden}(df, V, X)$
the natural logarithm of the density of the inverse Wishart distribution; missing if $df \leq n - 1$

$\ln\text{laplaceden}(m, b, x)$
the natural logarithm of the density of the Laplace distribution with mean m and scale parameter b

$\ln\text{mvnormalden}(M, V, X)$
the natural logarithm of the multivariate normal density

$\ln\text{normal}(z)$
the natural logarithm of the cumulative standard normal distribution

$\ln\text{normalden}(z)$
the natural logarithm of the normal density, $N(0, 1)$

$\ln\text{normalden}(x, \sigma)$
the natural logarithm of the normal density with mean 0 and standard deviation σ

$\ln\text{normalden}(x, \mu, \sigma)$
the natural logarithm of the normal density with mean μ and standard deviation σ, $N(\mu, \sigma^2)$

$\ln\text{normalden}(m, \mu, \sigma)$
the density of the logistic distribution with mean m, scale s, and standard deviation $s\pi/\sqrt{3}$

$\log(x)$
the natural logarithm, $\ln(x)$; thus, a synonym for $\ln(x)$

$\log10(x)$
the base-10 logarithm of x

$\text{logistic}(x)$
the cumulative logistic distribution with mean 0 and standard deviation $\pi/\sqrt{3}$

$\text{logistic}(s, x)$
the cumulative logistic distribution with mean 0, scale s, and standard deviation $s\pi/\sqrt{3}$

$\text{logistic}(m, s, x)$
the cumulative logistic distribution with mean m, scale s, and standard deviation $s\pi/\sqrt{3}$

$\text{logisticden}(x)$
the density of the logistic distribution with mean 0 and standard deviation $\pi/\sqrt{3}$

$\text{logisticden}(s, x)$
the density of the logistic distribution with mean 0, scale s, and standard deviation $s\pi/\sqrt{3}$

$\text{logisticden}(m, s, x)$
the density of the logistic distribution with mean m, scale s, and standard deviation $s\pi/\sqrt{3}$

$\text{logistic_tail}(x)$
the reverse cumulative logistic distribution with mean 0 and standard deviation $\pi/\sqrt{3}$
logistictail(s, x)
the reverse cumulative logistic distribution with mean 0, scale s, and standard deviation \(s\pi/\sqrt{3}\)

logistictail(m, s, x)
the reverse cumulative logistic distribution with mean m, scale s, and standard deviation \(s\pi/\sqrt{3}\)

logit(x)
the log of the odds ratio of x, \(\logit(x) = \ln \{x/(1-x)\}\)

matmissing(M)
1 if any elements of the matrix are missing; otherwise, 0

matrix(exp)
restricts name interpretation to scalars and matrices; see scalar()

matuniform(r, c)
the \(r \times c\) matrices containing uniformly distributed pseudorandom numbers on the interval (0, 1)

max(x1, x2, ..., xn)
the maximum value of \(x_1, x_2, \ldots, x_n\)

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

maxbyte()
the largest value that can be stored in storage type byte

maxdouble()
the largest value that can be stored in storage type double

maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

missing(x1, x2, ..., xn)
1 if any \(x_i\) evaluates to missing; otherwise, 0

mm(e tc)
the minute corresponding to datetime \(e_{tc}\) (ms. since 01jan1960 00:00:00.000)

mmC(e tC)
the minute corresponding to datetime \(e_{tC}\) (ms. with leap seconds since 01jan1960 00:00:00.000)

mod(x, y)
the modulus of \(x\) with respect to \(y\)

mofd(e d)
the \(e_m\) monthly date (months since 1960m1) containing date \(e_d\)

month(e d)
the numeric month corresponding to date \(e_d\)

monthly(s1, s2[, Y])
the \(e_m\) monthly date (months since 1960m1) corresponding to \(s_1\) based on \(s_2\) and \(Y\); \(Y\) specifies topyear; see date()

mreldif(X, Y)
the relative difference of \(X\) and \(Y\), where the relative difference is defined as \(\max_{i,j} \{|x_{ij} - y_{ij}|/(|y_{ij}| + 1)|\}\)

msofhours(h)
\(h \times 3,600,000\)

msofminutes(m)
\(m \times 60,000\)

msofseconds(s)
\(s \times 1,000\)

nbetaden(a, b, np, x)
the probability density function of the noncentral beta distribution; 0 if \(x < 0\) or \(x > 1\)
28 Functions by name

nbinomial(n,k,p) the cumulative probability of the negative binomial distribution
nbinomialp(n,k,p) the negative binomial probability
nbinomialtail(n,k,p) the reverse cumulative probability of the negative binomial distribution
nchi2(df,np,x) the cumulative noncentral χ^2 distribution; 0 if $x < 0$
nchi2den(df,np,x) the probability density function of the noncentral χ^2 distribution; 0 if $x < 0$
nchi2tail(df,np,x) the reverse cumulative (upper tail or survivor) noncentral χ^2 distribution; 1 if $x < 0$
nF(df1,df2,np,f) the cumulative noncentral F distribution with df_1 numerator and df_2 denominator degrees of freedom and noncentrality parameter np; 0 if $f < 0$
nFden(df1,df2,np,f) the probability density function of the noncentral F distribution with df_1 numerator and df_2 denominator degrees of freedom and noncentrality parameter np; 0 if $f < 0$
nFtail(df1,df2,np,f) the reverse cumulative (upper tail or survivor) noncentral F distribution with df_1 numerator and df_2 denominator degrees of freedom and noncentrality parameter np; 1 if $f < 0$
nibeta(a,b,np,x) the cumulative noncentral beta distribution; 0 if $x < 0$; or 1 if $x > 1$

normal(z) the cumulative standard normal distribution
normalden(z) the standard normal density, $N(0,1)$
normalden(x,σ) the normal density with mean 0 and standard deviation σ
normalden(x,μ,σ) the normal density with mean μ and standard deviation σ, $N(\mu,\sigma^2)$
npnchi2(df,x,p) the noncentrality parameter, np, for noncentral χ^2: if \nchi2(df, np, x) = p, then npnchi2(df, x, p) = np
npnF(df1,df2,f,p) the noncentrality parameter, np, for the noncentral F: if \nF(df1, df2, np, f) = p, then npnF(df1, df2, f, p) = np
npnt(df,t,p) the noncentrality parameter, np, for the noncentral Student’s t distribution: if nt(df, np, t) = p, then npnt(df, t, p) = np
nt(df,np,t) the cumulative noncentral Student’s t distribution with df degrees of freedom and noncentrality parameter np
ntden(df,np,t) the probability density function of the noncentral Student’s t distribution with df degrees of freedom and noncentrality parameter np
n ttail(df,np,t) the reverse cumulative (upper tail or survivor) noncentral Student’s t distribution with df degrees of freedom and noncentrality parameter np

nullmat(matname) use with the row-join (,) and column-join (\) operators in programming situations

plural(n,s) the plural of s if $n \neq \pm 1$
plural(n,s1,s2) the plural of s_1, as modified by or replaced with s_2, if $n \neq \pm 1$
poisson(m,k) the probability of observing floor(k) or fewer outcomes that are distributed as Poisson with mean m
poissonp(m,k) the probability of observing floor(k) outcomes that are distributed as Poisson with mean m
poissontail(m,k) the probability of observing floor(k) or more outcomes that are distributed as Poisson with mean m
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>qofd(e_d)</td>
<td>the e_q quarterly date (quarters since 1960q1) containing date e_d</td>
</tr>
<tr>
<td>quarter(e_d)</td>
<td>the numeric quarter of the year corresponding to date e_d</td>
</tr>
<tr>
<td>quarterly($s_1,s_2[,Y]$)</td>
<td>the e_q quarterly date (quarters since 1960q1) corresponding to s_1 based on s_2 and Y; Y specifies toyear; see date()</td>
</tr>
<tr>
<td>$r(name)$</td>
<td>the value of the stored result $r(name)$; see [U] 18.8 Accessing results calculated by other programs</td>
</tr>
<tr>
<td>$r(a,b)$</td>
<td>beta(a,b) random variates, where a and b are the beta distribution shape parameters</td>
</tr>
<tr>
<td>$rnbinomial(n,p)$</td>
<td>binomial(n,p) random variates, where n is the number of trials and p is the success probability</td>
</tr>
<tr>
<td>$rcauchy(a,b)$</td>
<td>Cauchy(a,b) random variates, where a is the location parameter and b is the scale parameter</td>
</tr>
<tr>
<td>$rchi2(df)$</td>
<td>chi-squared, with df degrees of freedom, random variates</td>
</tr>
<tr>
<td>$recode(x,x_1,...,x_n)$</td>
<td>missing if x_1, x_2, ..., x_n is not weakly increasing; x if x is missing; x_1 if $x \leq x_1$; x_2 if $x \leq x_2$, ...; otherwise, x_n if $x > x_1$, x_2, ..., x_{n-1}. $x_i \geq$ is interpreted as $x_i = +\infty$</td>
</tr>
<tr>
<td>$real(s)$</td>
<td>s converted to numeric or missing</td>
</tr>
<tr>
<td>$regexm(s,re)$</td>
<td>performs a match of a regular expression and evaluates to 1 if regular expression re is satisfied by the ASCII string s; otherwise, 0</td>
</tr>
<tr>
<td>$regexr(s_1,re,s_2)$</td>
<td>replaces the first substring within ASCII string s_1 that matches re with ASCII string s_2 and returns the resulting string</td>
</tr>
<tr>
<td>$regexs(n)$</td>
<td>subexpression n from a previous regexm() match, where $0 \leq n < 10$</td>
</tr>
<tr>
<td>$reldif(x,y)$</td>
<td>the “relative” difference $</td>
</tr>
<tr>
<td>1</td>
<td>1 if the first nonblank character of local macro ‘0’ is a comma, or if ‘0’ is empty</td>
</tr>
<tr>
<td>$return(name)$</td>
<td>the value of the to-be-stored result $r(name)$; see [P] return</td>
</tr>
<tr>
<td>$rexpontential(b)$</td>
<td>exponential random variates with scale b</td>
</tr>
<tr>
<td>$rgamma(a,b)$</td>
<td>gamma(a,b) random variates, where a is the gamma shape parameter and b is the scale parameter</td>
</tr>
<tr>
<td>$rhypergeometric(N,K,n)$</td>
<td>hypergeometric random variates</td>
</tr>
<tr>
<td>$rigaussian(m,a)$</td>
<td>inverse Gaussian random variates with mean m and shape parameter a</td>
</tr>
<tr>
<td>$rlnplace(m,a)$</td>
<td>Laplace(m,b) random variates with mean m and scale parameter b</td>
</tr>
<tr>
<td>$rlogistic()$</td>
<td>logistic variates with mean 0 and standard deviation $\pi/\sqrt{3}$</td>
</tr>
<tr>
<td>$rlogistic(s)$</td>
<td>logistic variates with mean 0, scale s, and standard deviation $s\pi/\sqrt{3}$</td>
</tr>
<tr>
<td>$rlogistic(m,s)$</td>
<td>logistic variates with mean m, scale s, and standard deviation $s\pi/\sqrt{3}$</td>
</tr>
<tr>
<td>$rnbinomial(n,p)$</td>
<td>negative binomial (Gaussian) random variates</td>
</tr>
<tr>
<td>$rnormal()$</td>
<td>standard normal (Gaussian) random variates, that is, variates from a normal distribution with a mean of 0 and a standard deviation of 1</td>
</tr>
<tr>
<td>$rnormal(m)$</td>
<td>normal($m,1$) (Gaussian) random variates, where m is the mean and the standard deviation is 1</td>
</tr>
</tbody>
</table>
rnornal(m,s) \text{ (Gaussian) random variates, where } m \text{ is the mean and } s \text{ is the standard deviation}

round(x,y) or round(x) \text{ x rounded in units of y or x rounded to the nearest integer if the argument y is omitted; x (not ".") if x is missing (meaning that round(.a) = .a and that round(.a,y) = .a if y is not missing) and if y is missing, then "." is returned}

roweqnumb(M,s) \text{ the equation number of M associated with row equation s; missing if the row equation cannot be found}

rowfreakps(M,s) \text{ the number of free parameters in rows of M}

rownfumb(M,s) \text{ the row number of M associated with row name s; missing if the row cannot be found}

rowsf(M) \text{ the number of rows of M}

rpoisson(m) \text{ Poisson(m) random variates, where m is the distribution mean}

rt(df) \text{ Student's t random variates, where df is the degrees of freedom}

runiform() \text{ uniformly distributed random variates over the interval (0,1)}

runiform(a,b) \text{ uniformly distributed random variates over the interval (a,b)}

runiformint(a,b) \text{ uniformly distributed random integer variates on the interval } [a,b]

rweibull(a,b) \text{ Weibull variates with shape a and scale b}

rweibull(a,b,g) \text{ Weibull variates with shape a, scale b, and location g}

rweibull(a,b,g) \text{ Weibull (proportional hazards) variates with shape a, scale b, and location g}

s($name$) \text{ the value of stored result } s(name); \text{ see [U] 18.8 Accessing results calculated by other programs}

scalar(exp) \text{ restricts name interpretation to scalars and matrices}

seconds(ms) \text{ $ms/1,000$}

sign(x) \text{ the sign of x: -1 if $x < 0$, 0 if $x = 0$, 1 if $x > 0$, or missing if x is missing}

sin(x) \text{ the sine of x, where x is in radians}

sinh(x) \text{ the hyperbolic sine of x}

smallestdouble() \text{ the smallest double-precision number greater than zero}

soundex(s) \text{ the soundex code for a string, s}

soundex_nara(s) \text{ the U.S. Census soundex code for a string, s}

sqrt(x) \text{ the square root of x}

ss(etc) \text{ the second corresponding to datetime etc (ms. since 01jan1960 00:00:00.000)}

ssC(etC) \text{ the second corresponding to datetime etC (ms. with leap seconds since 01jan1960 00:00:00.000)}

strcat(s_1,s_2) \text{ there is no strcat() function; instead the addition operator is used to concatenate strings}

strdup(s_1,n) \text{ there is no strdup() function; instead the multiplication operator is used to create multiple copies of strings}

string(n) \text{ a synonym for strofreal(n)}

string(n,s) \text{ a synonym for strofreal(n,s)}
Functions by name

- **strtrim(s)**: S with multiple, consecutive internal blanks (ASCII space character `char(32)`) collapsed to one blank
- **strlen(s)**: The number of characters in ASCII `s` or length in bytes
- **strlower(s)**: Lowercase ASCII characters in string `s`
- **strltrim(s)**: `s` without leading blanks (ASCII space character `char(32)`)
- **strmatch(s1,s2)**: 1 if `s1` matches the pattern `s2`; otherwise, 0
- **strofreal(n)**: `n` converted to a string
- **strofreal(n,s)**: `n` converted to a string using the specified display format
- **strpos(s1,s2)**: The position in `s1` at which `s2` is first found; otherwise, 0
- **strproper(s)**: A string with the first ASCII letter and any other letters immediately following characters that are not letters capitalized; all other ASCII letters converted to lowercase
- **strreverse(s)**: Reverses the ASCII string `s`
- **strrtrim(s)**: `s` without trailing blanks (ASCII space character `char(32)`)
- **strtoname(s[,p])**: `s` translated into a Stata 13 compatible name
- **substring(s1,s2,s3,n)**: `s1`, where the first `n` occurrences in `s1` of `s2` have been replaced with `s3`
- **subinword(s1,s2,s3,n)**: `s1`, where the first `n` occurrences in `s1` of `s2` as a word have been replaced with `s3`
- **substr(s,n1,n2)**: The substring of `s`, starting at `n1`, for a length of `n2`
- **sum(x)**: The running sum of `x`, treating missing values as zero
- **sweep(M,i)**: Matrix `M` with `i`th row/column swept
- **t(df,t)**: The cumulative Student’s `t` distribution with `df` degrees of freedom
- **tan(x)**: The tangent of `x`, where `x` is in radians
- **tanh(x)**: The hyperbolic tangent of `x`
- **tC(l)**: Convenience function to make typing dates and times in expressions easier
- **tc(l)**: Convenience function to make typing dates and times in expressions easier
- **td(l)**: Convenience function to make typing dates in expressions easier
- **tden(df,t)**: The probability density function of Student’s `t` distribution
- **th(l)**: Convenience function to make typing half-yearly dates in expressions easier
- **tin(d1,d2)**: True if `d1` ≤ `t` ≤ `d2`, where `t` is the time variable previously `tsset`
- **tm(l)**: Convenience function to make typing monthly dates in expressions easier
- **tobase(s[,n])**: Escaped decimal or hex digit strings of up to 200 bytes of `s`
- **tq(l)**: Convenience function to make typing quarterly dates in expressions easier
- **trace(M)**: The trace of matrix `M`
- **trigamma(x)**: The second derivative of `lngamma(x) = d^2 ln\Gamma(x)/dx^2`
trunc(x) a synonym for \texttt{int(x)}

ttail(df,t) the reverse cumulative (upper tail or survivor) Student’s \(t\) distribution; the probability \(T > t\)

tukeyprob(k,df,x) the cumulative Tukey’s Studentized range distribution with \(k\) ranges and \(df\) degrees of freedom; 0 if \(x < 0\)

tw(l) convenience function to make typing weekly dates in expressions easier

twithin(d1,d2) \texttt{true} if \(d_1 < t < d_2\), where \(t\) is the time variable previously \texttt{tsset}

uchar(n) the Unicode character corresponding to Unicode code point \(n\) or an empty string if \(n\) is beyond the Unicode code-point range

udstrlen(s) the number of display columns needed to display the Unicode string \(s\) in the Stata Results window

udsubstr(s,n1,n2) the Unicode substring of \(s\), starting at character \(n_1\), for \(n_2\) display columns

uisdigit(s) 1 if the first Unicode character in \(s\) is a Unicode decimal digit; otherwise, 0

uisletter(s) 1 if the first Unicode character in \(s\) is a Unicode letter; otherwise, 0

ustrcompare(s1,s2[,loc]) compares two Unicode strings

ustrcompareex(s1,s2,loc,case,cslv,norm,num,alt,fr) compares two Unicode strings

ustrfix(s[,rep]) replaces each invalid UTF-8 sequence with a Unicode character

ustrfrom(s,enc,mode) converts the string \(s\) in encoding \(enc\) to a UTF-8 encoded Unicode string

ustrinvalidcnt(s) the number of invalid UTF-8 sequences in \(s\)

ustrleft(s,n) the first \(n\) Unicode characters of the Unicode string \(s\)

ustrlen(s) the number of characters in the Unicode string \(s\)

ustrlower(s[,loc]) lowercase all characters of Unicode string \(s\) under the given locale \(loc\)

ustrltrim(s) removes the leading Unicode whitespace characters and blanks from the Unicode string \(s\)

ustrnormalize(s,norm) normalizes Unicode string \(s\) to one of the five normalization forms specified by \texttt{norm}

ustrpos(s1,s2[,n]) the position in \(s_1\) at which \(s_2\) is first found; otherwise, 0

ustrregex(s,re[,noc]) performs a match of a regular expression and evaluates to 1 if regular expression \(re\) is satisfied by the Unicode string \(s\); otherwise, 0

ustrregexra(s1,re,s2[,noc]) replaces all substrings within the Unicode string \(s_1\) that match \(re\) with \(s_2\) and returns the resulting string

ustrregexrf(s1,re,s2[,noc]) replaces the first substring within the Unicode string \(s_1\) that matches \(re\) with \(s_2\) and returns the resulting string

ustrregexs(n) subexpression \(n\) from a previous \texttt{ustrregex()} match

ustrreverse(s) reverses the Unicode string \(s\)

ustrright(s,n) the last \(n\) Unicode characters of the Unicode string \(s\)

ustrpos(s1,s2[,n]) the position in \(s_1\) at which \(s_2\) is last found; otherwise, 0

ustrrtrim(s) remove trailing Unicode whitespace characters and blanks from the Unicode string \(s\)
ustrsortkey(s[, loc]) generates a null-terminated byte array that can be used by the sort command to produce the same order as ustrcompare()
ustrsortkeyex(s, loc, st, case, csvl, norm, num, alt, fr) generates a null-terminated byte array that can be used by the sort command to produce the same order as ustrcompare()
ustrtitle(s[, loc]) a string with the first characters of Unicode words titlecased and other characters lowercased
ustrto(s, enc, mode) converts the Unicode string s in UTF-8 encoding to a string in encoding enc
ustrtohex(s[, n]) escaped hex digit string of s up to 200 Unicode characters
ustrtoname(s[, p]) string s translated into a Stata name
ustrtrim(s) removes leading and trailing Unicode whitespace characters and blanks from the Unicode string s
ustrunescape(s) the Unicode string corresponding to the escaped sequences of s
ustrupper(s[, loc]) uppercase all characters in string s under the given locale loc
ustrword(s, n[, noc]) the nth Unicode word in the Unicode string s
ustrwordcount(s[, loc]) the number of nonempty Unicode words in the Unicode string s
usubinstr(s1, s2, s3, n) replaces the first n occurrences of the Unicode string s2 with the Unicode string s3 in s1
usubstr(s, n1, n2) the Unicode substring of s, starting at n1, for a length of n2
vec(M) a column vector formed by listing the elements of M, starting with the first column and proceeding column by column
vecdiag(M) the row vector containing the diagonal of matrix M
week(e_d) the numeric week of the year corresponding to date e_d, the %td encoded date (days since 01jan1960)
weekly(s1, s2[, Y]) the e_w weekly date (weeks since 1960w1) corresponding to s1 based on s2 and Y; Y specifies topyear; see date()
weibull(a, b, x) the cumulative Weibull distribution with shape a and scale b
weibull(a, b, g, x) the cumulative Weibull distribution with shape a, scale b, and location g
weibullden(a, b, x) the probability density function of the Weibull distribution with shape a and scale b
weibullden(a, b, g, x) the probability density function of the Weibull distribution with shape a, scale b, and location g
weibullph(a, b, x) the cumulative Weibull (proportional hazards) distribution with shape a and scale b
weibullph(a, b, g, x) the cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g
weibullphden(a, b, x) the probability density function of the Weibull (proportional hazards) distribution with shape a and scale b
weibullphden(a, b, g, x) the probability density function of the Weibull (proportional hazards) distribution with shape a, scale b, and location g
weibullphtail(a, b, x) the reverse cumulative Weibull (proportional hazards) distribution with shape a and scale b
weibullphtail(a, b, g, x) the reverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g
weibulltail(a, b, x)
the reverse cumulative Weibull distribution with shape \(a\) and scale \(b\).

weibulltail(a, b, g, x)
the reverse cumulative Weibull distribution with shape \(a\), scale \(b\), and location \(g\).

wofd(e_d)
the \(e_w\) weekly date (weeks since 1960w1) containing date \(e_d\).

word(s, n)
the \(n\)th word in \(s\); **missing** (""") if \(n\) is missing.

wordbreaklocale(loc, type)
the most closely related locale supported by ICU from \(loc\) if \(type\)
is 1, the actual locale where the word-boundary analysis data come from if \(type\) is 2; or an empty string is returned for any other \(type\).

wordcount(s)
the number of words in \(s\).

year(e_d)
the numeric year corresponding to date \(e_d\).

yearly(s_1, s_2[, Y])
the \(e_y\) yearly date (year) corresponding to \(s_1\) based on \(s_2\) and \(Y\); \(Y\) specifies \(topyear\); see **date()**.

yh(Y, H)
the \(e_h\) half-yearly date (half-years since 1960h1) corresponding to year \(Y\), half-year \(H\).

ym(Y, M)
the \(e_m\) monthly date (months since 1960m1) corresponding to year \(Y\), month \(M\).

yofd(e_d)
the \(e_y\) yearly date (year) containing date \(e_d\).

yq(Y, Q)
the \(e_q\) quarterly date (quarters since 1960q1) corresponding to year \(Y\), quarter \(Q\).

yw(Y, W)
the \(e_w\) weekly date (weeks since 1960w1) corresponding to year \(Y\), week \(W\).

Also see

[FN] **Functions by category**
[D] **egen** — Extensions to generate
[D] **generate** — Create or change contents of variable
[M-4] **intro** — Categorical guide to Mata functions
[U] **13.3 Functions**
Date and time functions

<table>
<thead>
<tr>
<th>Contents</th>
<th>Functions</th>
<th>Video example</th>
<th>Reference</th>
<th>Also see</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bofd(cal",ed)</code></td>
<td>the (\text{ed}) business date corresponding to (\text{ed})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>Cdhms(ed,h,m,s)</code></td>
<td>the (\text{etC}) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to (\text{ed}, \text{h}, \text{m}, \text{s})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>Chms(h,m,s)</code></td>
<td>the (\text{etC}) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to (\text{h}, \text{m}, \text{s}) on 01jan1960</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>Clock(s1,s2[\(Y\])</code></td>
<td>the (\text{etC}) datetime (ms. since 01jan1960 00:00:00.000) corresponding to (\text{s1}) based on (\text{s2}) and (Y)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>clock(s1,s2[\(Y\])</code></td>
<td>the (\text{etC}) datetime (ms. since 01jan1960 00:00:00.000) corresponding to (\text{s1}) based on (\text{s2}) and (Y)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>Cmdyhms(M,D,Y,h,m,s)</code></td>
<td>the (\text{etC}) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to (\text{M}, \text{D}, \text{Y}, \text{h}, \text{m}, \text{s})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>Cofc(etc)</code></td>
<td>the (\text{etC}) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of (\text{etC}) (ms. without leap seconds since 01jan1960 00:00:00.000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>cofC(etC)</code></td>
<td>the (\text{etC}) datetime (ms. without leap seconds since 01jan1960 00:00:00.000) of (\text{etC}) (ms. with leap seconds since 01jan1960 00:00:00.000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>Cofd(ed)</code></td>
<td>the (\text{etC}) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of date (\text{ed}) at time 00:00:00.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>cofd(ed)</code></td>
<td>the (\text{etC}) datetime (ms. since 01jan1960 00:00:00.000) of date (\text{ed}) at time 00:00:00.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>daily(s1,s2[\(Y\])</code></td>
<td>a synonym for (\text{date}(s1,s2[(Y])`</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>date(s1,s2[\(Y\])</code></td>
<td>the (\text{ed}) date (days since 01jan1960) corresponding to (\text{s1}) based on (\text{s2}) and (Y)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>day(ed)</code></td>
<td>the numeric day of the month corresponding to (\text{ed})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>dhms(ed,h,m,s)</code></td>
<td>the (\text{etC}) datetime (ms. since 01jan1960 00:00:00.000) corresponding to (\text{ed}, \text{h}, \text{m}, \text{s})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>dofb(eb,"cal")</code></td>
<td>the (\text{ed}) datetime corresponding to (\text{eb})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>dofC(etC)</code></td>
<td>the (\text{ed}) date (days since 01jan1960) of datatime (\text{etC}) (ms. with leap seconds since 01jan1960 00:00:00.000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>dofC(etC)</code></td>
<td>the (\text{ed}) date (days since 01jan1960) of datatime (\text{etC}) (ms. since 01jan1960 00:00:00.000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>dofh(eth)</code></td>
<td>the (\text{ed}) date (days since 01jan1960) of the start of half-year (\text{eth})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>dofm(emu)</code></td>
<td>the (\text{ed}) date (days since 01jan1960) of the start of month (\text{emu})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>dofq(eq)</code></td>
<td>the (\text{ed}) date (days since 01jan1960) of the start of quarter (\text{eq})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>dofw(ew)</code></td>
<td>the (\text{ed}) date (days since 01jan1960) of the start of week (\text{ew})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>dofy(ey)</code></td>
<td>the (\text{ed}) date (days since 01jan1960) of 01jan in year (\text{ey})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Date and time functions

- **dow**(e_d) the numeric day of the week corresponding to date e_d; 0 = Sunday, 1 = Monday, ..., 6 = Saturday
- **doy**(e_d) the numeric day of the year corresponding to date e_d
- **halfyear**(e_d) the numeric half of the year corresponding to date e_d
- **halfyearly**($s_1, s_2[, Y]$) the e_h half-yearly date (half-years since 1960h1) corresponding to s_1 based on s_2 and Y; Y specifies topyear; see **date**()
- **hh**(e_{tc}) the hour corresponding to datetime e_{tc} (ms. since 01jan1960 00:00:00.000)
- **hhC**(e_{tC}) the hour corresponding to datetime e_{tC} (ms. with leap seconds since 01jan1960 00:00:00.000)
- **hms**(h, m, s) the e_{tc} datetime (ms. since 01jan1960 00:00:00.000) corresponding to h, m, s on 01jan1960
- **hofd**(e_d) the e_h half-yearly date (half years since 1960h1) containing date e_d
- **hours**(ms) $ms/3,600,000$
- **mdy**(M, D, Y) the e_d date (days since 01jan1960) corresponding to M, D, Y
- **mdyhms**(M, D, Y, h, m, s) the e_{tc} datetime (ms. since 01jan1960 00:00:00.000) corresponding to M, D, Y, h, m, s
- **minutes**(ms) $ms/60,000$
- **mm**(e_{tc}) the minute corresponding to datetime e_{tc} (ms. since 01jan1960 00:00:00.000)
- **mmC**(e_{tC}) the minute corresponding to datetime e_{tC} (ms. with leap seconds since 01jan1960 00:00:00.000)
- **mofd**(e_d) the e_m monthly date (months since 1960m1) containing date e_d
- **month**(e_d) the numeric month corresponding to date e_d
- **monthly**($s_1, s_2[, Y]$) the e_m monthly date (months since 1960m1) corresponding to s_1 based on s_2 and Y; Y specifies topyear; see **date**()
- **msofhours**(h) $h \times 3,600,000$
- **msofminutes**(m) $m \times 60,000$
- **msofseconds**(s) $s \times 1,000$
- **qofd**(e_d) the e_q quarterly date (quarters since 1960q1) containing date e_d
- **quarter**(e_d) the numeric quarter of the year corresponding to date e_d
- **quarterly**($s_1, s_2[, Y]$) the e_q quarterly date (quarters since 1960q1) corresponding to s_1 based on s_2 and Y; Y specifies topyear; see **date**()
- **seconds**(ms) $ms/1,000$
- **ss**(e_{tc}) the second corresponding to datetime e_{tc} (ms. since 01jan1960 00:00:00.000)
- **ssC**(e_{tC}) the second corresponding to datetime e_{tC} (ms. with leap seconds since 01jan1960 00:00:00.000)
- **tC**(l) convenience function to make typing dates and times in expressions easier
- **tc**(l) convenience function to make typing dates and times in expressions easier
- **td**(l) convenience function to make typing dates in expressions easier
- **th**(l) convenience function to make typing half-yearly dates in expressions easier
Date and time functions are described with examples in [U] 24 Working with dates and times and [D] datetime. What follows is a technical description. We use the following notation:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_b</td>
<td>%tb business calendar date (days)</td>
</tr>
<tr>
<td>e_{tc}</td>
<td>%tc encoded datetime (ms. since 01jan1960 00:00:00.000)</td>
</tr>
<tr>
<td>e_{tc}</td>
<td>%tc encoded datetime (ms. with leap seconds since 01jan1960 00:00:00.000)</td>
</tr>
<tr>
<td>e_d</td>
<td>%td encoded date (days since 01jan1960)</td>
</tr>
<tr>
<td>e_w</td>
<td>%tw encoded weekly date (weeks since 1960w1)</td>
</tr>
<tr>
<td>e_m</td>
<td>%tm encoded monthly date (months since 1960m1)</td>
</tr>
<tr>
<td>e_q</td>
<td>%tq encoded quarterly date (quarters since 1960q1)</td>
</tr>
<tr>
<td>e_h</td>
<td>%th encoded half-yearly date (half-years since 1960h1)</td>
</tr>
<tr>
<td>e_y</td>
<td>%ty encoded yearly date (years)</td>
</tr>
<tr>
<td>M</td>
<td>month, 1–12</td>
</tr>
<tr>
<td>D</td>
<td>day of month, 1–31</td>
</tr>
<tr>
<td>Y</td>
<td>year, 0100–9999</td>
</tr>
<tr>
<td>h</td>
<td>hour, 0–23</td>
</tr>
<tr>
<td>m</td>
<td>minute, 0–59</td>
</tr>
<tr>
<td>s</td>
<td>second, 0–59 or 60 if leap seconds</td>
</tr>
<tr>
<td>W</td>
<td>week number, 1–52</td>
</tr>
<tr>
<td>Q</td>
<td>quarter number, 1–4</td>
</tr>
<tr>
<td>H</td>
<td>half-year number, 1 or 2</td>
</tr>
</tbody>
</table>

Functions

- **tm(l)**: convenience function to make typing monthly dates in expressions easier
- **tq(l)**: convenience function to make typing quarterly dates in expressions easier
- **tw(l)**: convenience function to make typing weekly dates in expressions easier
- **week(e_d)**: the numeric week of the year corresponding to date e_d, the %td encoded date (days since 01jan1960)
- **weekly($s_1,s_2[,Y]$)**: the e_w weekly date (weeks since 1960w1) corresponding to s_1 based on s_2 and Y; Y specifies topyear; see date()
- **wofd(e_d)**: the e_w weekly date (weeks since 1960w1) containing date e_d
- **year(e_d)**: the numeric year corresponding to date e_d
- **yearly($s_1,s_2[,Y]$)**: the e_y yearly date (year) corresponding to s_1 based on s_2 and Y; Y specifies topyear; see date()
- **yh(Y,H)**: the e_h half-yearly date (half-years since 1960h1) corresponding to year Y, half-year H
- **ym(Y,M)**: the e_m monthly date (months since 1960m1) corresponding to year Y, month M
- **yofd(e_d)**: the e_y yearly date (year) containing date e_d
- **yq(Y,Q)**: the e_q quarterly date (quarters since 1960q1) corresponding to year Y, quarter Q
- **yw(Y,W)**: the e_w weekly date (weeks since 1960w1) corresponding to year Y, week W
The date and time functions, where integer arguments are required, allow noninteger values and use the floor() of the value.

A Stata date-and-time (%t) variable is recorded as the milliseconds, days, weeks, etc., depending upon the units from 01jan1960; negative values indicate dates and times before 01jan1960. Allowable dates and times are those between 01jan0100 and 31dec9999, inclusive, but all functions are based on the Gregorian calendar, and values do not correspond to historical dates before Friday, 15oct1582.

\[\text{bofd}("\text{cal}", e_d) \]
Description: the \(e_b \) business date corresponding to \(e_d \)
Domain \(\text{cal} \): business calendar names and formats
Domain \(e_d \): \%td as defined by business calendar named \(\text{cal} \)
Range: as defined by business calendar named \(\text{cal} \)

\[\text{Cdhms}(e_d, h, m, s) \]
Description: the \(e_t \) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to \(e_d, h, m, s \)
Domain \(e_d \): \%td dates 01jan0100 to 31dec9999 (integers \(-679,350\) to \(2,936,549\))
Domain \(h \): integers 0 to 23
Domain \(m \): integers 0 to 59
Domain \(s \): reals 0.000 to 60.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999 (integers \(-58,695,840,000,000\) to \(>253,717,919,999,999\)) or missing

\[\text{Chms}(h, m, s) \]
Description: the \(e_t \) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to \(h, m, s \) on 01jan1960
Domain \(h \): integers 0 to 23
Domain \(m \): integers 0 to 59
Domain \(s \): reals 0.000 to 60.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999 (integers \(-58,695,840,000,000\) to \(>253,717,919,999,999\)) or missing

\[\text{Clock}(s_1, s_2[, Y]) \]
Description: the \(e_t \) datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to \(s_1 \) based on \(s_2 \) and \(Y \)
Function \text{Clock()} works the same as function \text{clock()} except that \text{Clock()} returns a leap second–adjusted \%tc value rather than an unadjusted \%tc value. Use \text{Clock()} only if original time values have been adjusted for leap seconds.
Domain \(s_1 \): strings
Domain \(s_2 \): strings
Domain \(Y \): integers 1000 to 9998 (but probably 2001 to 2099)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999 (integers \(-58,695,840,000,000\) to \(>253,717,919,999,999\)) or missing
clock($s_1, s_2[, Y])$

Description: the e_{tc} datetime (ms. since 01jan1960 00:00:00.000) corresponding to s_1 based on s_2 and Y

s_1 contains the date, time, or both, recorded as a string, in virtually any format. Months can be spelled out, abbreviated (to three characters), or indicated as numbers; years can include or exclude the century; blanks and punctuation are allowed.

s_2 is any permutation of $M, D, [##]Y, h, m, and s$, with their order defining the order that month, day, year, hour, minute, and second occur (and whether they occur) in s_1. ##, if specified, indicates the default century for two-digit years in s_1. For instance, $s_2 = "MD19Y hm"$ would translate $s_1 = "11/15/91 21:14"$ as 15nov1991 21:14. The space in "MD19Y hm" was not significant and the string would have translated just as well with "MD19Yhm".

Y provides an alternate way of handling two-digit years. Y specifies the largest year that is to be returned when a two-digit year is encountered; see function `date()` below. If neither ## nor Y is specified, `clock()` returns `missing` when it encounters a two-digit year.

Domain s_1: strings
Domain s_2: strings
Domain Y: integers 1000 to 9998 (but probably 2001 to 2099)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$) or `missing`

Cmdayhms(M, D, Y, h, m, s)

Description: the e_{tc} datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to M, D, Y, h, m, s

Domain M: integers 1 to 12
Domain D: integers 1 to 31
Domain Y: integers 0100 to 9999 (but probably 1800 to 2100)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 60.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$) or `missing`

Cofc(e_{tc})

Description: the e_{tc} datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of e_{tc} (ms. without leap seconds since 01jan1960 00:00:00.000)

Domain e_{tc}: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$)

cofC(e_{tc})

Description: the e_{tc} datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of e_{tc} (ms. without leap seconds since 01jan1960 00:00:00.000)

Domain e_{tc}: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$)
Cofd(e_d)
Description: the e_tC datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of date e_d at time 00:00:00.000
Domain e_d: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999 (integers −58,695,840,000,000 to > 253,717,919,999,999)

cofd(e_d)
Description: the e_tC datetime (ms. since 01jan1960 00:00:00.000) of date e_d at time 00:00:00.000
Domain e_d: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999 (integers −58,695,840,000,000 to > 253,717,919,999,999)

daily(s_1,s_2[,Y])
Description: a synonym for date(s_1,s_2[,Y])

date(s_1,s_2[,Y])
Description: the e_d date (days since 01jan1960) corresponding to s_1 based on s_2 and Y
s_1 contains the date, recorded as a string, in virtually any format. Months can be spelled out, abbreviated (to three characters), or indicated as numbers; years can include or exclude the century; blanks and punctuation are allowed.
s_2 is any permutation of M, D, and [##]Y, with their order defining the order that month, day, and year occur in s_1. ##, if specified, indicates the default century for two-digit years in s_1. For instance, s_2 = "MD19Y" would translate s_1 = "11/15/91" as 15nov1991.
Y provides an alternate way of handling two-digit years. When a two-digit year is encountered, the largest year, topyear, that does not exceed Y is returned.

<table>
<thead>
<tr>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>date("1/15/08","MDY",1999) = 15jan1908</td>
<td></td>
</tr>
<tr>
<td>date("1/15/08","MDY",2019) = 15jan2008</td>
<td></td>
</tr>
<tr>
<td>date("1/15/51","MDY",2000) = 15jan1951</td>
<td></td>
</tr>
<tr>
<td>date("1/15/50","MDY",2000) = 15jan1950</td>
<td></td>
</tr>
<tr>
<td>date("1/15/49","MDY",2000) = 15jan1949</td>
<td></td>
</tr>
<tr>
<td>date("1/15/01","MDY",2050) = 15jan2001</td>
<td></td>
</tr>
<tr>
<td>date("1/15/00","MDY",2050) = 15jan2000</td>
<td></td>
</tr>
</tbody>
</table>

If neither ## nor Y is specified, date() returns missing when it encounters a two-digit year. See Working with two-digit years in [D] datetime translation for more information.

Domain s_1: strings
Domain s_2: strings
Domain Y: integers 1000 to 9998 (but probably 2001 to 2099)
Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549) or missing

day(e_d)
Description: the numeric day of the month corresponding to e_d
Domain e_d: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1 to 31 or missing
Date and time functions

dhms(e_{tc}, h, m, s)
- Description: the e_{tc} datetime (ms. since 01jan1960 00:00:00.000) corresponding to e_d, h, m, and s
- Domain e_d: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
- Domain h: integers 0 to 23
- Domain m: integers 0 to 59
- Domain s: reals 0.000 to 59.999
- Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999 (integers −58,695,840,000,000 to 253,717,919,999,999) or *missing*

dofb(e_{b},"cal")
- Description: the e_{d} datetime corresponding to e_{b}
- Domain e_{b}: %tb as defined by business calendar named *cal*
- Domain *cal*: business calendar names and formats
- Range: as defined by business calendar named *cal*

dofC(e_{tc})
- Description: the e_{d} date (days since 01jan1960) of datetime e_{tc} (ms. with leap seconds since 01jan1960 00:00:00.000)
- Domain e_{tc}: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999 (integers −58,695,840,000,000 to > 253,717,919,999,999)
- Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)

dofc(e_{tc})
- Description: the e_{d} date (days since 01jan1960) of datetime e_{tc} (ms. since 01jan1960 00:00:00.000)
- Domain e_{tc}: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999 (integers −58,695,840,000,000 to 253,717,919,999,999)
- Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)

dofh(e_{h})
- Description: the e_{d} date (days since 01jan1960) of the start of half-year e_{h}
- Domain e_{h}: %th dates 0100h1 to 9999h2 (integers −3,720 to 16,079)
- Range: %td dates 01jan0100 to 01jul9999 (integers −679,350 to 2,936,366)

dofm(e_{m})
- Description: the e_{d} date (days since 01jan1960) of the start of month e_{m}
- Domain e_{m}: %tm dates 0100m1 to 9999m12 (integers −22,320 to 96,479)
- Range: %td dates 01jan0100 to 01dec9999 (integers −679,350 to 2,936,519)

dofq(e_{q})
- Description: the e_{d} date (days since 01jan1960) of the start of quarter e_{q}
- Domain e_{q}: %tq dates 0100q1 to 9999q4 (integers −7,440 to 32,159)
- Range: %td dates 01jan0100 to 01oct9999 (integers −679,350 to 2,936,458)

dofw(e_{w})
- Description: the e_{d} date (days since 01jan1960) of the start of week e_{w}
- Domain e_{w}: %tw dates 0100w1 to 9999w52 (integers −96,720 to 418,079)
- Range: %td dates 01jan0100 to 24dec9999 (integers −679,350 to 2,936,542)
dofy(e_y)
Description: the e_d date (days since 01jan1960) of 01jan in year e_y
Domain e_y: %ty dates 0100 to 9999 (integers 0100 to 9999)
Range: %td dates 01jan0100 to 01jan9999 (integers −679,350 to 2,936,185)

dow(e_d)
Description: the numeric day of the week corresponding to date e_d; 0 = Sunday, 1 = Monday,
.... 6 = Saturday
Domain e_d: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 0 to 6 or missing

doy(e_d)
Description: the numeric day of the year corresponding to date e_d
Domain e_d: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1 to 366 or missing

halfyear(e_d)
Description: the numeric half of the year corresponding to date e_d
Domain e_d: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1, 2, or missing

halfyearly($s_1,s_2[]_Y$)
Description: the e_t half-yearly date (half-years since 1960h1) corresponding to s_1 based on s_2
and Y; Y specifies topyear; see date()
Domain s_1: strings
Domain s_2: strings "HY" and "YH"; Y may be prefixed with ##
Domain Y: integers 1000 to 9998 (but probably 2001 to 2099)
Range: %th dates 0100h1 to 9999h2 (integers −3,720 to 16,079) or missing

hh($e tc$)
Description: the hour corresponding to datetime $e tc$ (ms. since 01jan1960 00:00:00.000)
Domain $e tc$: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers −58,695,840,000,000 to 253,717,919,999,999,999)
Range: integers 0 through 23, missing

hhC($e tc$)
Description: the hour corresponding to datetime $e tc$ (ms. with leap seconds since 01jan1960
00:00:00.000)
Domain $e tc$: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers −58,695,840,000,000 to >253,717,919,999,999,999)
Range: integers 0 through 23, missing

hms(h,m,s)
Description: the $e tc$ datetime (ms. since 01jan1960 00:00:00.000) corresponding to h, m, s on
01jan1960
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 59.999
Range: datetimes 01jan1960 00:00:00.000 to 01jan1960 23:59:59.999 (integers 0 to 86,399,999
or missing)
holf(e_d)
Description: the e_h half-yearly date (half years since 1960h1) containing date e_d
Domain e_d: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Range: %th dates 0100h1 to 9999h2 (integers $-3,720$ to $16,079$)

hours(ms)
Description: $ms/3,600,000$
Domain ms: real; milliseconds
Range: real or missing

mdy(M, D, Y)
Description: the e_d date (days since 01jan1960) corresponding to M, D, Y
Domain M: integers 1 to 12
Domain D: integers 1 to 31
Domain Y: integers 0100 to 9999 (but probably 1800 to 2100)
Range: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$) or missing

mdyhms(M, D, Y, h, m, s)
Description: the e_{tc} datetime (ms. since 01jan1960 00:00:00.000) corresponding to M, D, Y, h, m, s
Domain M: integers 1 to 12
Domain D: integers 1 to 31
Domain Y: integers 0100 to 9999 (but probably 1800 to 2100)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$) or missing

minutes(ms)
Description: $ms/60,000$
Domain ms: real; milliseconds
Range: real or missing

mm(e_{tc})
Description: the minute corresponding to datetime e_{tc} (ms. since 01jan1960 00:00:00.000)
Domain e_{tc}: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$)
Range: integers 0 through 59, missing

mmC(e_{tC})
Description: the minute corresponding to datetime e_{tC} (ms. with leap seconds since 01jan1960 00:00:00.000)
Domain e_{tC}: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$)
Range: integers 0 through 59, missing

mofd(e_d)
Description: the e_m monthly date (months since 1960m1) containing date e_d
Domain e_d: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Range: %tm dates 0100m1 to 9999m12 (integers $-22,320$ to $96,479$)
month(e_d)
Description: the numeric month corresponding to date e_d
Domain e_d: $\%td$ dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Range: integers 1 to 12 or missing

monthly(s_1, s_2 [$, Y$])
Description: the e_m monthly date (months since 1960m1) corresponding to s_1 based on s_2 and Y; Y specifies toyear, see date()
Domain s_1: strings
Domain s_2: strings "MY" and "YM"; Y may be prefixed with ##
Domain Y: integers 1000 to 9998 (but probably 2001 to 2099)
Range: $\%tm$ dates 0100m1 to 9999m12 (integers $-22,320$ to $96,479$) or missing

msofhours(h)
Description: $h \times 3,600,000$
Domain h: real; hours
Range: real or missing; milliseconds

msofminutes(m)
Description: $m \times 60,000$
Domain m: real; minutes
Range: real or missing; milliseconds

msofseconds(s)
Description: $s \times 1,000$
Domain s: real; seconds
Range: real or missing; milliseconds

qofd(e_d)
Description: the e_q quarterly date (quarters since 1960q1) containing date e_d
Domain e_d: $\%td$ dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Range: $\%tq$ dates 0100q1 to 9999q4 (integers $-7,440$ to $32,159$)

quarter(e_d)
Description: the numeric quarter of the year corresponding to date e_d
Domain e_d: $\%td$ dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Range: integers 1 to 4 or missing

quarterly(s_1, s_2 [$, Y$])
Description: the e_q quarterly date (quarters since 1960q1) corresponding to s_1 based on s_2 and Y; Y specifies toyear, see date()
Domain s_1: strings
Domain s_2: strings "QY" and "YQ"; Y may be prefixed with ##
Domain Y: integers 1000 to 9998 (but probably 2001 to 2099)
Range: $\%tq$ dates 0100q1 to 9999q4 (integers $-7,440$ to $32,159$) or missing

seconds(ms)
Description: $ms/1,000$
Domain ms: real; milliseconds
Range: real or missing
ss(ets)
Description: the second corresponding to datetime \(e_{tc} \) (ms. since 01jan1960 00:00:00.000)
Domain \(e_{tc} \): datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers \(-58,695,840,000,000\) to \(253,717,919,999,999\))
Range: real 0.000 through 59.999, missing

ssC(etC)
Description: the second corresponding to datetime \(e_{tC} \) (ms. with leap seconds since 01jan1960 00:00:00.000)
Domain \(e_{tC} \): datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers \(-58,695,840,000,000\) to \(>253,717,919,999,999\))
Range: real 0.000 through 60.999, missing

tc(l)
Description: convenience function to make typing dates and times in expressions easier
Same as \(tc() \), except returns leap second–adjusted values; for example, typing \(tc(29\text{nov}2007\ 9:15) \) is equivalent to typing 1511946900000, whereas \(tc(29\text{nov}2007\ 9:15) \) is 1511946923000.
Domain \(l \): datetime literal strings 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers \(-58,695,840,000,000\) to \(>253,717,919,999,999\))

td(l)
Description: convenience function to make typing dates in expressions easier
For example, typing \(td(2\text{jan}1960) \) is equivalent to typing 1.
Domain \(l \): date literal strings 01jan0100 to 31dec9999
Range: \(%td \) dates 01jan0100 to 31dec9999 (integers \(-679,350\) to \(2,936,549\))

th(l)
Description: convenience function to make typing half-yearly dates in expressions easier
For example, typing \(th(1960h2) \) is equivalent to typing 1.
Domain \(l \): half-year literal strings 0100h1 to 9999h2
Range: \(%th \) dates 0100h1 to 9999h2 (integers \(-3,720\) to \(16,079\))

tm(l)
Description: convenience function to make typing monthly dates in expressions easier
For example, typing \(tm(1960m2) \) is equivalent to typing 1.
Domain \(l \): month literal strings 0100m1 to 9999m12
Range: \(%tm \) dates 0100m1 to 9999m12 (integers \(-22,320\) to \(96,479\))
46 Date and time functions

\textbf{tq(l)}

Description: convenience function to make typing quarterly dates in expressions easier

For example, typing \tq(1960q2) is equivalent to typing 1.

\begin{itemize}
 \item Domain \texttt{l}: quarter literal strings 0100q1 to 9999q4
 \item Range: %tq dates 0100q1 to 9999q4 (integers $-7,440$ to $32,159$)
\end{itemize}

\textbf{tw(l)}

Description: convenience function to make typing weekly dates in expressions easier

For example, typing \tw(1960w2) is equivalent to typing 1.

\begin{itemize}
 \item Domain \texttt{l}: week literal strings 0100w1 to 9999w52
 \item Range: %tw dates 0100w1 to 9999w52 (integers $-96,720$ to $418,079$)
\end{itemize}

\textbf{week(\texttt{e_d})}

Description: the numeric week of the year corresponding to date \texttt{e_d}, the \%td encoded date (days since 01jan1960)

Note: The first week of a year is the first 7-day period of the year.

\begin{itemize}
 \item Domain \texttt{e_d}: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
 \item Range: integers 1 to 52 or \texttt{missing}
\end{itemize}

\textbf{weekly(s_1,s_2,Y)}

Description: the \texttt{e_w} weekly date (weeks since 1960w1) corresponding to \texttt{s_1} based on \texttt{s_2} and \texttt{Y}; \texttt{Y} specifies toyear; see \texttt{date()}

\begin{itemize}
 \item Domain \texttt{s_1}: strings
 \item Domain \texttt{s_2}: strings "WY" and "YW"; \texttt{Y} may be prefixed with ##
 \item Domain \texttt{Y}: integers 1000 to 9998 (but probably 2001 to 2099)
 \item Range: %tw dates 0100w1 to 9999w52 (integers $-96,720$ to $418,079$) or \texttt{missing}
\end{itemize}

\textbf{wofd(\texttt{e_d})}

Description: the \texttt{e_w} weekly date (weeks since 1960w1) containing date \texttt{e_d}

\begin{itemize}
 \item Domain \texttt{e_d}: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
 \item Range: %tw dates 0100w1 to 9999w52 (integers $-96,720$ to $418,079$)
\end{itemize}

\textbf{year(\texttt{e_d})}

Description: the numeric year corresponding to date \texttt{e_d}

\begin{itemize}
 \item Domain \texttt{e_d}: %td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
 \item Range: integers 0100 to 9999 (but probably 1800 to 2100)
\end{itemize}

\textbf{yearly(s_1,s_2,Y)}

Description: the \texttt{e_y} yearly date (year) corresponding to \texttt{s_1} based on \texttt{s_2} and \texttt{Y}; \texttt{Y} specifies toyear; see \texttt{date()}

\begin{itemize}
 \item Domain \texttt{s_1}: strings
 \item Domain \texttt{s_2}: string "Y"; \texttt{Y} may be prefixed with ##
 \item Domain \texttt{Y}: integers 1000 to 9998 (but probably 2001 to 2099)
 \item Range: %ty dates 0100 to 9999 (integers 0100 to 9999) or \texttt{missing}
\end{itemize}

\textbf{yh(Y,H)}

Description: the \texttt{e_h} half-yearly date (half-years since 1960h1) corresponding to year \texttt{Y}, half-year \texttt{H}

\begin{itemize}
 \item Domain \texttt{Y}: integers 1000 to 9999 (but probably 1800 to 2100)
 \item Domain \texttt{H}: integers 1, 2
 \item Range: %th dates 1000h1 to 9999h2 (integers $-1,920$ to $16,079$)
\end{itemize}
```
ym(Y, M)
Description: the \( e_m \) monthly date (months since 1960m1) corresponding to year \( Y \), month \( M \)
Domain \( Y \): integers 1000 to 9999 (but probably 1800 to 2100)
Domain \( M \): integers 1 to 12
Range: \%tm dates 1000m1 to 9999m12 (integers -11,520 to 96,479)

yofd(e_d)
Description: the \( e_y \) yearly date (year) containing date \( e_d \)
Domain \( e_d \): \%td dates 01jan0100 to 31dec9999 (integers -679,350 to 2,936,549)
Range: \%ty dates 0100 to 9999 (integers 0100 to 9999)

yq(Y, Q)
Description: the \( e_q \) quarterly date (quarters since 1960q1) corresponding to year \( Y \), quarter \( Q \)
Domain \( Y \): integers 1000 to 9999 (but probably 1800 to 2100)
Domain \( Q \): integers 1 to 4
Range: \%tq dates 1000q1 to 9999q4 (integers -3,840 to 32,159)

yw(Y, W)
Description: the \( e_w \) weekly date (weeks since 1960w1) corresponding to year \( Y \), week \( W \)
Domain \( Y \): integers 1000 to 9999 (but probably 1800 to 2100)
Domain \( W \): integers 1 to 52
Range: \%tw dates 1000w1 to 9999w52 (integers -49,920 to 418,079)
```

Video example

How to create a date variable from a date stored as a string

Reference

Also see

- [FN] Functions by category
- [D] datetime — Date and time values and variables
- [D] egen — Extensions to generate
- [D] generate — Create or change contents of variable
- [M-5] date() — Date and time manipulation
- [U] 13.3 Functions
Mathematical functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs(x)</td>
<td>the absolute value of x</td>
</tr>
<tr>
<td>ceil(x)</td>
<td>the unique integer n such that (n - 1 < x \leq n); x (not “.”) if x is missing, meaning that ceil(.a) = .a</td>
</tr>
<tr>
<td>cloglog(x)</td>
<td>the complementary log-log of x</td>
</tr>
<tr>
<td>comb(n,k)</td>
<td>the combinatorial function (n!/{k!(n-k)!})</td>
</tr>
<tr>
<td>digamma(x)</td>
<td>the (\text{digamma}()) function, (d\ln\Gamma(x)/dx)</td>
</tr>
<tr>
<td>exp(x)</td>
<td>the exponential function (e^x)</td>
</tr>
<tr>
<td>floor(x)</td>
<td>the unique integer n such that (n \leq x < n + 1); x (not “.”) if x is missing, meaning that floor(.a) = .a</td>
</tr>
<tr>
<td>int(x)</td>
<td>the integer obtained by truncating x toward 0 (thus, int(5.2) = 5 and int(-5.8) = -5); x (not “.”) if x is missing, meaning that int(.a) = .a</td>
</tr>
<tr>
<td>invcloglog(x)</td>
<td>the inverse of the complementary log-log function of x</td>
</tr>
<tr>
<td>invlogit(x)</td>
<td>the inverse of the logit function of x</td>
</tr>
<tr>
<td>ln(x)</td>
<td>the natural logarithm, (\ln(x))</td>
</tr>
<tr>
<td>lnfactorial(n)</td>
<td>the natural log of (n) factorial = (\ln(n!))</td>
</tr>
<tr>
<td>lngamma(x)</td>
<td>(\ln{\Gamma(x)})</td>
</tr>
<tr>
<td>log(x)</td>
<td>the natural logarithm, (\ln(x)); thus, a synonym for (\ln(x))</td>
</tr>
<tr>
<td>log10(x)</td>
<td>the base-10 logarithm of x</td>
</tr>
<tr>
<td>logit(x)</td>
<td>the log of the odds ratio of x, (\logit(x) = \ln{x/(1-x)})</td>
</tr>
<tr>
<td>max(x1,x2,...,xn)</td>
<td>the maximum value of (x_1, x_2, \ldots, x_n)</td>
</tr>
<tr>
<td>min(x1,x2,...,xn)</td>
<td>the minimum value of (x_1, x_2, \ldots, x_n)</td>
</tr>
<tr>
<td>mod(x,y)</td>
<td>the modulus of x with respect to y</td>
</tr>
<tr>
<td>reldif(x,y)</td>
<td>the “relative” difference (</td>
</tr>
<tr>
<td>round(x,y) or round(x)</td>
<td>x rounded in units of y or x rounded to the nearest integer if the argument y is omitted; x (not “.”) if x is missing (meaning that round(.a) = .a and that round(.a,y) = .a if y is not missing) and if y is missing, then “.” is returned</td>
</tr>
<tr>
<td>sign(x)</td>
<td>the sign of x: -1 if (x < 0), 0 if (x = 0), 1 if (x > 0), or missing if x is missing</td>
</tr>
<tr>
<td>sqrt(x)</td>
<td>the square root of x</td>
</tr>
<tr>
<td>sum(x)</td>
<td>the running sum of x, treating missing values as zero</td>
</tr>
<tr>
<td>trigamma(x)</td>
<td>the second derivative of (\ln\gamma(x) = d^2 \ln\Gamma(x)/dx^2)</td>
</tr>
<tr>
<td>trunc(x)</td>
<td>a synonym for (\text{int}(x))</td>
</tr>
</tbody>
</table>
Mathematical functions

Functions

abs(x)
Description: the absolute value of x
Domain: \(-8e+307\) to \(8e+307\)
Range: 0 to \(8e+307\)

ceil(x)
Description: the unique integer \(n\) such that \(n - 1 < x \leq n\); \(x\) (not “.”) if \(x\) is missing, meaning that \(\text{ceil}(.a) = .a\)
Also see floor(x), int(x), and round(x).
Domain: \(-8e+307\) to \(8e+307\)
Range: integers in \(-8e+307\) to \(8e+307\)

cloglog(x)
Description: the complementary log-log of \(x\)
\(c\loglog(x) = \ln\{-\ln(1 - x)\}\)
Domain: 0 to 1
Range: \(-8e+307\) to \(8e+307\)

comb(n,k)
Description: the combinatorial function \(n!/{k!(n - k)!}\)
Domain \(n\): integers 1 to \(1e+305\)
Domain \(k\): integers 0 to \(n\)
Range: 0 to \(8e+307\) or missing

digamma(x)
Description: the digamma() function, \(d\ln\Gamma(x)/dx\)
This is the derivative of \(\ln\Gamma(x)\). The digamma(x) function is sometimes called the psi function, \(\psi(x)\).
Domain: \(-1e+15\) to \(8e+307\)
Range: \(-8e+307\) to \(8e+307\) or missing

exp(x)
Description: the exponential function \(e^x\)
This function is the inverse of \(\ln(x)\).
Domain: \(-8e+307\) to 709
Range: 0 to \(8e+307\)

floor(x)
Description: the unique integer \(n\) such that \(n \leq x < n + 1\); \(x\) (not “.”) if \(x\) is missing, meaning that \(\text{floor}(.a) = .a\)
Also see ceil(x), int(x), and round(x).
Domain: \(-8e+307\) to \(8e+307\)
Range: integers in \(-8e+307\) to \(8e+307\)
int(x)

Description: the integer obtained by truncating x toward 0 (thus, \(\text{int}(5.2) = 5\) and \(\text{int}(-5.8) = -5\)); x (not “.”) if x is missing, meaning that \(\text{int}(.a) = .a\)

One way to obtain the closest integer to x is \(\text{int}(x + \text{sign}(x)/2)\), which simplifies to \(\text{int}(x+0.5)\) for \(x \geq 0\). However, use of the **round()** function is preferred. Also see **round(x)**, **ceil(x)**, and **floor(x)**.

Domain: \(-8e+307\) to \(8e+307\)
Range: integers in \(-8e+307\) to \(8e+307\)

invclloglog(x)

Description: the inverse of the complementary log-log function of x

\[\text{invclloglog}(x) = 1 - \exp\{-\exp(x)\} \]

Domain: \(-8e+307\) to \(8e+307\)
Range: 0 to 1 or missing

invlogit(x)

Description: the inverse of the logit function of x

\[\text{invlogit}(x) = \exp(x)/\{1 + \exp(x)\} \]

Domain: \(-8e+307\) to \(8e+307\)
Range: 0 to 1 or missing

ln(x)

Description: the natural logarithm, \(\ln(x)\)

This function is the inverse of \(\exp(x)\). The logarithm of \(x\) in base \(b\) can be calculated via \(\log_b(x) = \log_a(x)/\log_a(b)\). Hence,

\[\log_5(x) = \frac{\ln(x)}{\ln(5)} = \frac{\log(x)}{\log(5)} = \frac{\log10(x)}{\log10(5)} \]

\[\log_2(x) = \frac{\ln(x)}{\ln(2)} = \frac{\log(x)}{\log(2)} = \frac{\log10(x)}{\log10(2)} \]

You can calculate \(\log_b(x)\) by using the formula that best suits your needs.

Domain: \(1e-323\) to \(8e+307\)
Range: \(-744\) to 709

lnfactorial(n)

Description: the natural log of \(n\) factorial = \(\ln(n!}\)

To calculate \(n!\), use \(\text{round}(\exp(\text{lnfactorial}(n)), 1)\) to ensure that the result is an integer. Logs of factorials are generally more useful than the factorials themselves because of overflow problems.

Domain: integers 0 to \(1e+305\)
Range: 0 to \(8e+307\)

lngamma(x)

Description: \(\ln\{\Gamma(x)\}\)

Here the gamma function, \(\Gamma(x)\), is defined by \(\Gamma(x) = \int_0^\infty t^{x-1}e^{-t}dt\). For integer values of \(x > 0\), this is \(\ln((x - 1)!))\).

\(\text{lngamma}(x)\) for \(x < 0\) returns a number such that \(\exp(\text{lngamma}(x))\) is equal to the absolute value of the gamma function, \(\Gamma(x)\). That is, \(\text{lngamma}(x)\) always returns a real (not complex) result.

Domain: \(-2,147,483,648\) to \(1e+305\) (excluding negative integers)
Range: \(-8e+307\) to \(8e+307\)
Mathematical functions 51

\(\log(x) \)
- **Description:** the natural logarithm, \(\ln(x) \); thus, a synonym for \(\ln(x) \)
- **Domain:** \(1e^{-323} \) to \(8e+307 \)
- **Range:** \(-744\) to \(709\)

\(\log_{10}(x) \)
- **Description:** the base-10 logarithm of \(x \)
- **Domain:** \(1e^{-323} \) to \(8e+307 \)
- **Range:** \(-323\) to \(308\)

\(\logit(x) \)
- **Description:** the log of the odds ratio of \(x \), \(\logit(x) = \ln \{ x/(1 - x) \} \)
- **Domain:** \(0 \) to \(1 \) (exclusive)
- **Range:** \(-8e+307\) to \(8e+307\) or missing

\(\max(x_1, x_2, \ldots, x_n) \)
- **Description:** the maximum value of \(x_1, x_2, \ldots, x_n \)
- **Unless all arguments are missing, missing values are ignored.**
- \(\max(2, 10, \ldots, 7) = 10 \)
- \(\max(\ldots, \ldots) = . \)
- **Domain** \(x_1 \): \(-8e+307\) to \(8e+307\) or missing
- **Domain** \(x_2 \): \(-8e+307\) to \(8e+307\) or missing
- ...
- **Domain** \(x_n \): \(-8e+307\) to \(8e+307\) or missing
- **Range:** \(-8e+307\) to \(8e+307\) or missing

\(\min(x_1, x_2, \ldots, x_n) \)
- **Description:** the minimum value of \(x_1, x_2, \ldots, x_n \)
- **Unless all arguments are missing, missing values are ignored.**
- \(\min(2, 10, \ldots, 7) = 2 \)
- \(\min(\ldots, \ldots) = . \)
- **Domain** \(x_1 \): \(-8e+307\) to \(8e+307\) or missing
- **Domain** \(x_2 \): \(-8e+307\) to \(8e+307\) or missing
- ...
- **Domain** \(x_n \): \(-8e+307\) to \(8e+307\) or missing
- **Range:** \(-8e+307\) to \(8e+307\) or missing

\(\text{mod}(x, y) \)
- **Description:** the modulus of \(x \) with respect to \(y \)
- \(\text{mod}(x, y) = x - y \lfloor x/y \rfloor \)
- \(\text{mod}(x, 0) = . \)
- **Domain** \(x \): \(-8e+307\) to \(8e+307\)
- **Domain** \(y \): \(0\) to \(8e+307\)
- **Range:** \(0\) to \(8e+307\)
rel dif \((x, y)\)
Description: the “relative” difference \(|x - y|/(|y| + 1)\); 0 if both arguments are the same type of extended missing value; \textit{missing} if only one argument is missing or if the two arguments are two different types of \textit{missing}

Domain \(x\): \(-8e+307\) to \(8e+307\) or \textit{missing}
Domain \(y\): \(-8e+307\) to \(8e+307\) or \textit{missing}
Range: \(-8e+307\) to \(8e+307\) or \textit{missing}

\textit{round}(\(x, y\)) or \textit{round}(\(x\))
Description: \(x\) rounded in units of \(y\) or \(x\) rounded to the nearest integer if the argument \(y\) is omitted; \(x\) (not “.”) if \(x\) is missing (meaning that \textit{round}(.\(a\)) = .\(a\) and that \textit{round}(.\(a\), \(y\)) = .\(a\) if \(y\) is not missing) and if \(y\) is missing, then “.” is returned

For \(y = 1\), or with \(y\) omitted, this amounts to the closest integer to \(x\); \textit{round}(5.2, 1) is 5, as is \textit{round}(4.8, 1); \textit{round}(-5.2, 1) is \(-5\), as is \textit{round}(-4.8, 1). The rounding definition is generalized for \(y \neq 1\). With \(y = 0.01\), for instance, \(x\) is rounded to two decimal places; \textit{round}(\sqrt{2}, .01) is 1.41. \(y\) may also be larger than 1; \textit{round}(28, 5) is 30, which is 28 rounded to the closest multiple of 5. For \(y = 0\), the function is defined as returning \(x\) unmodified. Also see \textit{int}(\(x\)), \textit{ceil}(\(x\)), and \textit{floor}(\(x\)).

Domain \(x\): \(-8e+307\) to \(8e+307\)
Domain \(y\): \(-8e+307\) to \(8e+307\)
Range: \(-8e+307\) to \(8e+307\)

\textit{sign}(\(x\))
Description: the sign of \(x\): \(-1\) if \(x < 0\), 0 if \(x = 0\), 1 if \(x > 0\), or \textit{missing} if \(x\) is missing

Domain: \(-8e+307\) to \(8e+307\) or \textit{missing}
Range: \(-1, 0, 1\) or \textit{missing}

\textit{sqrt}(\(x\))
Description: the square root of \(x\)

Domain: 0 to \(8e+307\)
Range: 0 to \(1e+154\)

\textit{sum}(\(x\))
Description: the running sum of \(x\), treating missing values as zero

For example, following the command \texttt{generate y=sum(x)}, the \(j\)th observation on \(y\) contains the sum of the first through \(j\)th observations on \(x\). See \[D\] \texttt{egen} for an alternative sum function, \texttt{total()}, that produces a constant equal to the overall sum.

Domain: all real numbers or \textit{missing}
Range: \(-8e+307\) to \(8e+307\) (excluding \textit{missing})

\textit{trigamma}(\(x\))
Description: the second derivative of \(\text{lngamma}(x) = d^2 \ln\Gamma(x)/dx^2\)

The \textit{trigamma()} function is the derivative of \textit{digamma}(\(x\)).

Domain: \(-1e+15\) to \(8e+307\)
Range: \(0\) to \(8e+307\) or \textit{missing}

\textit{trunc}(\(x\))
Description: a synonym for \textit{int}(\(x\))
Video example

How to round a continuous variable

References

Also see

[FN] **Functions by category**

[D] *egen* — Extensions to generate

[D] *generate* — Create or change contents of variable

[M-4] *intro* — Categorical guide to Mata functions

[U] **13.3 Functions**
Matrix functions

Contents

cholesky(M)
the Cholesky decomposition of the matrix: if \(R = \text{cholesky}(S) \), then \(RR^T = S \)

coleqnumb(M,s)
the equation number of \(M \) associated with column equation \(s \);
\(\text{missing} \) if the column equation cannot be found

colnfreeparms(M,s)
the number of free parameters in columns of \(M \)

colnumb(M,s)
the column number of \(M \) associated with column name \(s \); \(\text{missing} \) if the column cannot be found

colsof(M)
the number of columns of \(M \)

corr(M)
the correlation matrix of the variance matrix

det(M)
the determinant of matrix \(M \)

diag(v)
the square, diagonal matrix created from the row or column vector

diag0cnt(M)
the number of zeros on the diagonal of \(M \)

el(s,i,j)
\(s[\text{floor}(i),\text{floor}(j)] \), the \(i,j \) element of the matrix named \(s \);
\(\text{missing} \) if \(i \) or \(j \) are out of range or if matrix \(s \) does not exist

get(systemname)
a copy of Stata internal system matrix \(\text{systemname} \)

hadamard(M,N)
a matrix whose \(i,j \) element is \(M[i,j] \cdot N[i,j] \) (if \(M \) and \(N \) are not the same size, this function reports a conformability error)

\(I(n) \)
an \(n \times n \) identity matrix if \(n \) is an integer; otherwise, a \(\text{round}(n) \times \text{round}(n) \) identity matrix

inv(M)
the inverse of the matrix \(M \)

einv(M)
the inverse of \(M \) if \(M \) is positive definite

issymmetric(M)
1 if the matrix is symmetric; otherwise, 0

J(r,c,z)
the \(r \times c \) matrix containing elements \(z \)

matmissing(M)
1 if any elements of the matrix are missing; otherwise, 0

matuniform(r,c)
the \(r \times c \) matrices containing uniformly distributed pseudorandom numbers on the interval \((0,1)\)

mreldif(X,Y)
the relative difference of \(X \) and \(Y \), where the relative difference is defined as \(\max_{i,j} \{ |x_{ij} - y_{ij}| / (|y_{ij}| + 1) \} \)

nullmat(matname)
use with the row-join (,) and column-join (\) operators in programming situations

roweqnumb(M,s)
the equation number of \(M \) associated with row equation \(s \); \(\text{missing} \) if the row equation cannot be found

rownfreeparms(M,s)
the number of free parameters in rows of \(M \)

rownumb(M,s)
the row number of \(M \) associated with row name \(s \); \(\text{missing} \) if the row cannot be found

rowsof(M)
the number of rows of \(M \)

sweep(M,i)
matrix \(M \) with \(i \)th row/column swept
Matrix functions 55

- **trace(M)**: the trace of matrix \(M \)
- **vec(M)**: a column vector formed by listing the elements of \(M \), starting with the first column and proceeding column by column
- **vecdiag(M)**: the row vector containing the diagonal of matrix \(M \)

Functions

We divide the basic matrix functions into two groups, according to whether they return a matrix or a scalar:

- **Matrix functions returning a matrix**
- **Matrix functions returning a scalar**

Matrix functions returning a matrix

In addition to the functions listed below, see \([P] \ matrix \ svd\) for singular value decomposition, \([P] \ matrix \ symeigen\) for eigenvalues and eigenvectors of symmetric matrices, and \([P] \ matrix \ eigenvalues\) for eigenvalues of nonsymmetric matrices.

- **cholesky(M)**
 - Description: the Cholesky decomposition of the matrix: if \(R = \text{cholesky}(S) \), then \(RR^T = S \)
 - \(R^T \) indicates the transpose of \(R \). Row and column names are obtained from \(M \).
 - Domain: \(n \times n \), positive-definite, symmetric matrices
 - Range: \(n \times n \) lower-triangular matrices

- **corr(M)**
 - Description: the correlation matrix of the variance matrix
 - Row and column names are obtained from \(M \).
 - Domain: \(n \times n \) symmetric variance matrices
 - Range: \(n \times n \) symmetric correlation matrices

- **diag(v)**
 - Description: the square, diagonal matrix created from the row or column vector
 - Row and column names are obtained from the column names of \(M \) if \(M \) is a row vector or from the row names of \(M \) if \(M \) is a column vector.
 - Domain: \(1 \times n \) and \(n \times 1 \) vectors
 - Range: \(n \times n \) diagonal matrices

- **get(systemname)**
 - Description: a copy of Stata internal system matrix \(systemname \)
 - This function is included for backward compatibility with previous versions of Stata.
 - Domain: existing names of system matrices
 - Range: matrices
hadamard(M,N)
Description: a matrix whose \(i, j \) element is \(M[i,j] \cdot N[i,j] \) (if \(M \) and \(N \) are not the same size, this function reports a conformability error)
Domain \(M \): \(m \times n \) matrices
Domain \(N \): \(m \times n \) matrices
Range: \(m \times n \) matrices

\(I(n) \)
Description: an \(n \times n \) identity matrix if \(n \) is an integer; otherwise, a \(\text{round}(n) \times \text{round}(n) \) identity matrix
Domain: real scalars 1 to \text{matsize}
Range: identity matrices

\(\text{inv}(M) \)
Description: the inverse of the matrix \(M \)
If \(M \) is singular, this will result in an error.
The function \(\text{invsym}() \) should be used in preference to \(\text{inv}() \) because \(\text{invsym}() \) is more accurate. The row names of the result are obtained from the column names of \(M \), and the column names of the result are obtained from the row names of \(M \).
Domain: \(n \times n \) nonsingular matrices
Range: \(n \times n \) matrices

\(\text{invsym}(M) \)
Description: the inverse of \(M \) if \(M \) is positive definite
If \(M \) is not positive definite, rows will be inverted until the diagonal terms are zero or negative; the rows and columns corresponding to these terms will be set to 0, producing a \(g2 \) inverse. The row names of the result are obtained from the column names of \(M \), and the column names of the result are obtained from the row names of \(M \).
Domain: \(n \times n \) symmetric matrices
Range: \(n \times n \) symmetric matrices

\(J(r,c,z) \)
Description: the \(r \times c \) matrix containing elements \(z \)
Domain \(r \): integer scalars 1 to \text{matsize}
Domain \(c \): integer scalars 1 to \text{matsize}
Domain \(z \): scalars \(-8e+307\) to \(8e+307 \)
Range: \(r \times c \) matrices

\(\text{matuniform}(r,c) \)
Description: the \(r \times c \) matrices containing uniformly distributed pseudorandom numbers on the interval \((0,1)\)
Domain \(r \): integer scalars 1 to \text{matsize}
Domain \(c \): integer scalars 1 to \text{matsize}
Range: \(r \times c \) matrices
nullmat(matname)
Description: use with the row-join (,) and column-join (\) operators in programming situations
Consider the following code fragment, which is an attempt to create the vector (1,2,3,4):

```stata
forvalues i = 1/4 {
    mat v = (v, 'i')
}
```
The above program will not work because, the first time through the loop, v will not yet exist, and thus forming (v, ‘i’) makes no sense. nullmat() relaxes that restriction:

```stata
forvalues i = 1/4 {
    mat v = (nullmat(v), 'i')
}
```
The nullmat() function informs Stata that if v does not exist, the function row-join is to be generalized. Joining nothing with ‘i’ results in (‘i’). Thus the first time through the loop, v = (1) is formed. The second time through, v does exist, so v = (1,2) is formed, and so on.

nullmat() can be used only with the , and \ operators.

Domain: matrix names, existing and nonexisting
Range: matrices including null if matname does not exist

sweep(M,i)
Description: matrix M with ith row/column swept
The row and column names of the resultant matrix are obtained from M, except that the nth row and column names are interchanged. If B = sweep(A,k), then

\[
B_{kk} = \frac{1}{A_{kk}} \\
B_{ik} = -\frac{A_{ik}}{A_{kk}}, \quad i \neq k \\
B_{kj} = \frac{A_{kj}}{A_{kk}}, \quad j \neq k \\
B_{ij} = A_{ij} - \frac{A_{ik}A_{kj}}{A_{kk}}, \quad i \neq k, j \neq k
\]

Domain M: \(n \times n \) matrices
Domain i: integer scalars 1 to \(n \)
Range: \(n \times n \) matrices

vec(M)
Description: a column vector formed by listing the elements of M, starting with the first column and proceeding column by column

Domain: matrices
Range: column vectors (\(n \times 1 \) matrices)
vecdiag(\(M\))
Description: the row vector containing the diagonal of matrix \(M\)

\text{vecdiag()} is the opposite of \text{diag()}. The row name is set to \text{r1}; the column names are obtained from the column names of \(M\).

Domain: \(n \times n\) matrices
Range: \(1 \times n\) vectors

Matrix functions returning a scalar

coleqnumb(\(M, s\))
Description: the equation number of \(M\) associated with column equation \(s\); \text{missing} if the column equation cannot be found

Domain \(M\): matrices
Domain \(s\): strings
Range: integer scalars 1 to \text{matsize} or \text{missing}

colnfreeparms(\(M\))
Description: the number of free parameters in columns of \(M\)

Domain: matrices
Range: integer scalars 0 to \text{matsize}

colnumb(\(M, s\))
Description: the column number of \(M\) associated with column name \(s\); \text{missing} if the column cannot be found

Domain \(M\): matrices
Domain \(s\): strings
Range: integer scalars 1 to \text{matsize} or \text{missing}

colsof(\(M\))
Description: the number of columns of \(M\)

Domain: matrices
Range: integer scalars 1 to \text{matsize}

det(\(M\))
Description: the determinant of matrix \(M\)

Domain: \(n \times n\) (square) matrices
Range: scalars \(-8e+307\) to \(8e+307\)

diag0cnt(\(M\))
Description: the number of zeros on the diagonal of \(M\)

Domain: \(n \times n\) (square) matrices
Range: integer scalars 0 to \(n\)

e1(\(s,i,j\))
Description: \(s[floor(i),floor(j)]\), the \(i,j\) element of the matrix named \(s\); \text{missing} if \(i\) or \(j\) are out of range or if matrix \(s\) does not exist

Domain \(s\): strings containing matrix name
Domain \(i\): scalars 1 to \text{matsize}
Domain \(j\): scalars 1 to \text{matsize}
Range: scalars \(-8e+307\) to \(8e+307\) or \text{missing}
issymmetric(M)

Description: 1 if the matrix is symmetric; otherwise, 0

Domain M: matrices

Range: integers 0 and 1

matmissing(M)

Description: 1 if any elements of the matrix are missing; otherwise, 0

Domain M: matrices

Range: integers 0 and 1

mreldif(X,Y)

Description: the relative difference of X and Y, where the relative difference is defined as $\max_{i,j}\{\frac{|x_{ij} - y_{ij}|}{(|y_{ij}| + 1)}\}$

Domain X: matrices

Domain Y: matrices with same number of rows and columns as X

Range: scalars $-8e+307$ to $8e+307$

roweqnumb(M,s)

Description: the equation number of M associated with row equation s; missing if the row equation cannot be found

Domain M: matrices

Domain s: strings

Range: integer scalars 1 to matsize or missing

rownfreeparms(M)

Description: the number of free parameters in rows of M

Domain: matrices

Range: integer scalars 0 to matsize

rownumb(M,s)

Description: the row number of M associated with row name s; missing if the row cannot be found

Domain M: matrices

Domain s: strings

Range: integer scalars 1 to matsize or missing

rowsof(M)

Description: the number of rows of M

Domain: matrices

Range: integer scalars 1 to matsize

trace(M)

Description: the trace of matrix M

Domain: $n \times n$ (square) matrices

Range: scalars $-8e+307$ to $8e+307$
Jacques Salomon Hadamard (1865–1963) was born in Versailles, France. He studied at the Ecole Normale Supérieure in Paris and obtained a doctorate in 1892 for a thesis on functions defined by Taylor series. Hadamard taught at Bordeaux for 4 years and in a productive period published an outstanding theorem on prime numbers, proved independently by Charles de la Vallée Poussin, and worked on what are now called Hadamard matrices. In 1897, he returned to Paris, where he held a series of prominent posts. In his later career, his interests extended from pure mathematics toward mathematical physics. Hadamard produced papers and books in many different areas. He campaigned actively against anti-Semitism at the time of the Dreyfus affair. After the fall of France in 1940, he spent some time in the United States and then Great Britain.

Reference

Also see
[FN] Functions by category
[D] egen — Extensions to generate
[D] generate — Create or change contents of variable
[M-4] intro — Categorical guide to Mata functions
[U] 13.3 Functions
[U] 14.8 Matrix functions
Programming functions

Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Functions</th>
<th>References</th>
<th>Also see</th>
</tr>
</thead>
<tbody>
<tr>
<td>autocode(x, n, x_0, x_1)</td>
<td>partitions the interval from x_0 to x_1 into n equal-length intervals and returns the upper bound of the interval that contains x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>byteorder()</td>
<td>1 if your computer stores numbers by using a hi-lo byte order and evaluates to 2 if your computer stores numbers by using a lohi byte order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c(name)</td>
<td>the value of the system or constant result $c(name)$ (see [P] creturn)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_caller()</td>
<td>version of the program or session that invoked the currently running program; see [P] version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chop(x, ϵ)</td>
<td>round(x) if $\text{abs}(x - \text{round}(x)) < \epsilon$; otherwise, x; or x if x is missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clip(x, a, b)</td>
<td>x if $a < x < b$, b if $x \geq b$, a if $x \leq a$, or missing if x is missing; or if $a > b$; x if x is missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cond(x, a, b, [, c])</td>
<td>a if x is true and nonmissing, b if x is false, and c if x is missing; a if c is not specified and x evaluates to missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e(name)</td>
<td>the value of stored result $e(name)$; see [U] 18.8 Accessing results calculated by other programs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e(sample)</td>
<td>1 if the observation is in the estimation sample and 0 otherwise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>epsdouble()</td>
<td>the machine precision of a double-precision number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>epsfloat()</td>
<td>the machine precision of a floating-point number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fileexists(f)</td>
<td>1 if the file specified by f exists; otherwise, 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fileread(f)</td>
<td>the contents of the file specified by f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>filereaderror(f)</td>
<td>0 or positive integer, said value having the interpretation of a return code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fwrite(f, s, [, r])</td>
<td>writes the string specified by s to the file specified by f and returns the number of bytes in the resulting file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>float(x)</td>
<td>the value of x rounded to float precision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fmtwidth(fmtstr)</td>
<td>the output length of the %fmt contained in fmtstr; missing if fmtstr does not contain a valid %fmt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>has_eprop(name)</td>
<td>1 if name appears as a word in e(properties); otherwise, 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inlist(z, a, b, ...)</td>
<td>1 if z is a member of the remaining arguments; otherwise, 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inrange(z, a, b)</td>
<td>1 if it is known that $a \leq z \leq b$; otherwise, 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>irecode(x, x_1, ..., x_n)</td>
<td>missing if x is missing or x_1, ..., x_n is not weakly increasing; 0 if $x \leq x_1$; 1 if $x_1 < x \leq x_2$; 2 if $x_2 < x \leq x_3$; ...; n if $x > x_n$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>matrix(exp)</td>
<td>restricts name interpretation to scalars and matrices; see scalar()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxbyte()</td>
<td>the largest value that can be stored in storage type byte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxdouble()</td>
<td>the largest value that can be stored in storage type double</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
maxfloat()
the largest value that can be stored in storage type float

maxint()
the largest value that can be stored in storage type int

maxlong()
the largest value that can be stored in storage type long

mi(x_1, x_2, \ldots, x_n)
a synonym for missing(x_1, x_2, \ldots, x_n)

minbyte()
the smallest value that can be stored in storage type byte

mindouble()
the smallest value that can be stored in storage type double

minfloat()
the smallest value that can be stored in storage type float

minint()
the smallest value that can be stored in storage type int

minlong()
the smallest value that can be stored in storage type long

missing(x_1, x_2, \ldots, x_n)
1 if any \(x_i \) evaluates to missing; otherwise, 0

r(name)
the value of the stored result \(r(name) \); see [U] 18.8 Accessing results calculated by other programs

recode(x, x_1, \ldots, x_n)
missing if \(x_1, x_2, \ldots, x_n \) is not weakly increasing; \(x \) if \(x \) is missing; \(x_1 \) if \(x \leq x_1 \); \(x_2 \) if \(x \leq x_2 \), \ldots; otherwise, \(x_n \) if \(x > x_1, x_2, \ldots, x_{n-1} \). \(x_i \geq \) is interpreted as \(x_i = +\infty \)

replay()
1 if the first nonblank character of local macro ‘0’ is a comma, or if ‘0’ is empty

return(name)
the value of the to-be-stored result \(r(name) \); see [P] return

s(name)
the value of stored result \(s(name) \); see [U] 18.8 Accessing results calculated by other programs

scalar(exp)
restricts name interpretation to scalars and matrices

smallestdouble()
the smallest double-precision number greater than zero

Functions

autocode(x, n, x_0, x_1)

Description: partitions the interval from \(x_0 \) to \(x_1 \) into \(n \) equal-length intervals and returns the upper bound of the interval that contains \(x \)

This function is an automated version of recode(). See [U] 25 Working with categorical data and factor variables for an example.

The algorithm for autocode() is

\[
\text{if } (n \geq 0 \land x_0 \geq 0 \land x_1 \geq 0 \land n \leq 0 \land x_0 \geq x_1) \\
\text{then return missing} \\
\text{if } x \geq 0 \text{, then return } x \\
\text{otherwise} \\
\text{for } i = 1 \text{ to } n - 1 \\
xmap = x_0 + i \ast (x_1 - x_0) / n \\
\text{if } x \leq xmap \text{ then return } xmap \\
\text{end} \\
\text{otherwise} \\
\text{return } x_1
\]

Domain \(x \): \(-8e+307 \) to \(8e+307 \)
Domain \(n \): integers 1 to \(8e+307 \)
Domain \(x_0 \): \(-8e+307 \) to \(8e+307 \)
Domain \(x_1 \): \(x_0 \) to \(8e+307 \)
Range: \(x_0 \) to \(x_1 \)
byteorder()
Description: 1 if your computer stores numbers by using a hilo byte order and evaluates to 2 if your computer stores numbers by using a lohi byte order

Consider the number 1 written as a 2-byte integer. On some computers (called hilo), it is written as “00 01”, and on other computers (called lohi), it is written as “01 00” (with the least significant byte written first). There are similar issues for 4-byte integers, 4-byte floats, and 8-byte floats. Stata automatically handles byte-order differences for Stata-created files. Users need not be concerned about this issue. Programmers producing custom binary files can use byteorder() to determine the native byte ordering; see [P] file.

Range: 1 and 2

c(name)
Description: the value of the system or constant result c(name) (see [P] return)

Referencing c(name) will return an error if the result does not exist.

Domain: names
Range: real values, strings, or missing

_caller()
Description: version of the program or session that invoked the currently running program; see [P] version

The current version at the time of this writing is 15, so 15 is the upper end of this range. If Stata 15.1 were the current version, 15.1 would be the upper end of this range, and likewise, if Stata 16 were the current version, 16 would be the upper end of this range. This is a function for use by programmers.

Range: 1 to 15.0

chop(x, \epsilon)
Description: round(x) if abs(x - round(x)) < \epsilon; otherwise, x; or x if x is missing

Domain x: -8e+307 to 8e+307
Domain \epsilon: -8e+307 to 8e+307
Range: -8e+307 to 8e+307

clip(x,a,b)
Description: x if a < x < b, b if x \geq b, a if x \leq a, or missing if x is missing or if a > b; x if x is missing

If a or b is missing, this is interpreted as a = -\infty or b = +\infty, respectively.

Domain x: -8e+307 to 8e+307
Domain a: -8e+307 to 8e+307
Domain b: -8e+307 to 8e+307
Range: -8e+307 to 8e+307
cond(x,a,b[,c])
Description: a if x is true and nonmissing, b if x is false, and c if x is missing; a if c is not specified and x evaluates to missing
Note that expressions such as x > 2 will never evaluate to missing.
cond(x>2,50,70) returns 50 if x > 2 (includes x ≥ .)
cond(x>2,50,70) returns 70 if x ≤ 2
If you need a case for missing values in the above examples, try
cond(missing(x), ., cond(x>2,50,70)) returns . if x is missing,
 returns 50 if x > 2, and returns 70 if x ≤ 2
If the first argument is a scalar that may contain a missing value or a variable
containing missing values, the fourth argument has an effect.
cond(wage,1,0,.) returns 1 if wage is not zero and not missing
cond(wage,1,0,.) returns 0 if wage is zero
cond(wage,1,0,.) returns . if wage is missing
Caution: If the first argument to cond() is a logical expression, that is,
cond(x>2,50,70,.) the fourth argument is never reached.
Domain x: −8e+307 to 8e+307 or missing; 0 ⇒ false, otherwise interpreted as true
Domain a: numbers and strings
Domain b: numbers if a is a number; strings if a is a string
Domain c: numbers if a is a number; strings if a is a string
Range: a, b, and c

\texttt{e(name)}
Description: the value of stored result \texttt{e(name)}; see [U] 18.8 Accessing results calculated by other programs
\texttt{e(name)} = scalar missing if the stored result does not exist
\texttt{e(name)} = specified matrix if the stored result is a matrix
\texttt{e(name)} = scalar numeric value if the stored result is a scalar
Domain: names
Range: strings, scalars, matrices, or missing

\texttt{e(sample)}
Description: 1 if the observation is in the estimation sample and 0 otherwise
Range: 0 and 1

\texttt{epsdouble()}
Description: the machine precision of a double-precision number
If d < \texttt{epsdouble()} and (double) x = 1, then x + d = (double) 1. This function
takes no arguments, but the parentheses must be included.
Range: a double-precision number close to 0

\texttt{epsfloat()}
Description: the machine precision of a floating-point number
If d < \texttt{epsfloat()} and (float) x = 1, then x + d = (float) 1. This function takes
no arguments, but the parentheses must be included.
Range: a floating-point number close to 0
fileexists(f)
Description: 1 if the file specified by f exists; otherwise, 0
If the file exists but is not readable, fileexists() will still return 1, because it does exist. If the “file” is a directory, fileexists() will return 0.
Domain: filenames
Range: 0 and 1

fileread(f)
Description: the contents of the file specified by f
If the file does not exist or an I/O error occurs while reading the file, then “fileread() error #” is returned, where # is a standard Stata error return code.
Domain: filenames
Range: strings

filereaderror(f)
Description: 0 or positive integer, said value having the interpretation of a return code
It is used like this

. generate strL $s = fileread(filename) if fileexists(filename)
. assert filereaderror($s)==0

or this

. generate strL $s = fileread(filename) if fileexists(filename)
. generate $rc = filereaderror($s)

That is, filereaderror(s) is used on the result returned by fileread(filename) to determine whether an I/O error occurred.
In the example, we only fileread() files that fileexists(). That is not required. If the file does not exist, that will be detected by filereaderror() as an error. The way we showed the example, we did not want to read missing files as errors. If we wanted to treat missing files as errors, we would have coded

. generate strL $s = fileread(filename)
. assert filereaderror($s)==0

or

. generate strL $s = fileread(filename)
. generate $rc = filereaderror($s)

Domain: strings
Range: integers
Programming functions

66 Programming functions

filewrite$(f,s[,r])$

Description: writes the string specified by s to the file specified by f and returns the number of bytes in the resulting file.

If the optional argument r is specified as 1, the file specified by f will be replaced if it exists. If r is specified as 2, the file specified by f will be appended to if it exists. Any other values of r are treated as if r were not specified; that is, f will only be written to if it does not already exist.

When the file f is freshly created or is replaced, the value returned by filewrite() is the number of bytes written to the file, $\text{strlen}(s)$. If r is specified as 2, and thus filewrite() is appending to an existing file, the value returned is the total number of bytes in the resulting file; that is, the value is the sum of the number of the bytes in the file as it existed before filewrite() was called and the number of bytes newly written to it, $\text{strlen}(s)$.

If the file exists and r is not specified as 1 or 2, or an error occurs while writing to the file, then a negative number (\#) is returned, where $\text{abs}(\#)$ is a standard Stata error return code.

Domain f: filenames
Domain s: strings
Domain r: integers 1 or 2
Range: integers

float(x)

Description: the value of x rounded to float precision

Although you may store your numeric variables as byte, int, long, float, or double, Stata converts all numbers to double before performing any calculations. Consequently, difficulties can arise in comparing numbers that have no finite binary representation.

For example, if the variable x is stored as a float and contains the value 1.1 (a repeating “decimal” in binary), the expression $x==1.1$ will evaluate to false because the literal 1.1 is the double representation of 1.1, which is different from the float representation stored in x. (They differ by 2.384×10^{-8}.) The expression $x==\text{float}(1.1)$ will evaluate to true because the float() function converts the literal 1.1 to its float representation before it is compared with x. (See [U] 13.12 Precision and problems therein for more information.)

Domain: $-1e+38$ to $1e+38$
Range: $-1e+38$ to $1e+38$

fmtwidth(fmtstr)

Description: the output length of the %fmt contained in fmtstr; missing if fmtstr does not contain a valid %fmt

For example, fmtwidth(“%9.2f”) returns 9 and fmtwidth(“%tc”) returns 18.

Range: strings

has_eprop(name)

Description: 1 if name appears as a word in e(properties); otherwise, 0

Domain: names
Range: 0 or 1
inlist\((z,a,b,\ldots) \)
Description: 1 if \(z \) is a member of the remaining arguments; otherwise, 0
All arguments must be reals or all must be strings. The number of arguments is between 2 and 255 for reals and between 2 and 10 for strings.
Domain: all reals or all strings
Range: 0 or 1

inrange\((z,a,b) \)
Description: 1 if it is known that \(a \leq z \leq b \); otherwise, 0
The following ordered rules apply:
\(z \geq \) returns 0.
\(a \geq \) and \(b = \) returns 1.
\(a \geq \) returns 1 if \(z \leq b \); otherwise, it returns 0.
\(b \geq \) returns 1 if \(a \leq z \); otherwise, it returns 0.
Otherwise, 1 is returned if \(a \leq z \leq b \).
If the arguments are strings, "." is interpreted as "".
Domain: all reals or all strings
Range: 0 or 1

irecode\((x,x_1,x_2,x_3,\ldots,x_n) \)
Description: missing if \(x \) is missing or \(x_1,\ldots,x_n \) is not weakly increasing; 0 if \(x \leq x_1 \); 1 if \(x_1 < x \leq x_2 \); 2 if \(x_2 < x \leq x_3 \); \ldots; \(n \) if \(x > x_n \)
Also see autocode() and recode() for other styles of recode functions.
\(\text{irecode}(3, -10, -5, -3, -3, 0, 15, .) = 5 \)
Domain \(x \): \(-8e+307\) to \(8e+307\)
Domain \(x_i \): \(-8e+307\) to \(8e+307\)
Range: nonnegative integers

matrix\((\text{exp}) \)
Description: restricts name interpretation to scalars and matrices; see scalar()
Domain: any valid expression
Range: evaluation of \(\text{exp} \)

maxbyte()
Description: the largest value that can be stored in storage type byte
This function takes no arguments, but the parentheses must be included.
Range: one integer number

maxdouble()
Description: the largest value that can be stored in storage type double
This function takes no arguments, but the parentheses must be included.
Range: one double-precision number

maxfloat()
Description: the largest value that can be stored in storage type float
This function takes no arguments, but the parentheses must be included.
Range: one floating-point number
maxint()
Description: the largest value that can be stored in storage type int
This function takes no arguments, but the parentheses must be included.
Range: one integer number

maxlong()
Description: the largest value that can be stored in storage type long
This function takes no arguments, but the parentheses must be included.
Range: one integer number

mi(x_1, x_2, \ldots, x_n)
Description: a synonym for missing(x_1, x_2, \ldots, x_n)

minbyte()
Description: the smallest value that can be stored in storage type byte
This function takes no arguments, but the parentheses must be included.
Range: one integer number

mindouble()
Description: the smallest value that can be stored in storage type double
This function takes no arguments, but the parentheses must be included.
Range: one double-precision number

minfloat()
Description: the smallest value that can be stored in storage type float
This function takes no arguments, but the parentheses must be included.
Range: one floating-point number

minint()
Description: the smallest value that can be stored in storage type int
This function takes no arguments, but the parentheses must be included.
Range: one integer number

minlong()
Description: the smallest value that can be stored in storage type long
This function takes no arguments, but the parentheses must be included.
Range: one integer number

missing(x_1, x_2, \ldots, x_n)
Description: 1 if any x_i evaluates to missing; otherwise, 0
Stata has two concepts of missing values: a numeric missing value (., .a, .b, ., .z) and a string missing value (""'). missing() returns 1 (meaning true) if any expression x_i evaluates to missing. If x is numeric, missing(x) is equivalent to $x \geq \ldots$. If x is string, missing(x) is equivalent to $x==""$.
Domain x_i: any string or numeric expression
Range: 0 and 1
r(name)

Description: the value of the stored result \(r(name) \); see [U] 18.8 Accessing results calculated by other programs

\[r(name) = \text{scalar missing if the stored result does not exist} \]
\[r(name) = \text{specified matrix if the stored result is a matrix} \]
\[r(name) = \text{scalar numeric value if the stored result is a scalar that can be interpreted as a number} \]

Domain: names

Range: strings, scalars, matrices, or missing

recode(\(x,x_1,x_2,\ldots,x_n\))

Description: missing if \(x_1,x_2,\ldots,x_n \) is not weakly increasing; \(x \) if \(x \) is missing; \(x_1 \) if \(x \leq x_1 \); \(x_2 \) if \(x \leq x_2 \); \ldots; otherwise, \(x_n \) if \(x > x_1, x_2, \ldots, x_{n-1} \). \(x_i \geq . \) is interpreted as \(x_i = +\infty \)

Also see `autocode()` and `irecode()` for other styles of recode functions.

Domain \(x \): \(-8e+307 \) to \(8e+307 \) or missing

Domain \(x_1 \): \(-8e+307 \) to \(8e+307 \)

Domain \(x_2 \): \(x_1 \) to \(8e+307 \)

\ldots

Domain \(x_n \): \(x_{n-1} \) to \(8e+307 \)

Range: \(x_1, x_2, \ldots, x_n \) or missing

replay()

Description: 1 if the first nonblank character of local macro ‘0’ is a comma, or if ‘0’ is empty

This is a function for use by programmers writing estimation commands; see [P] `ereturn`.

Range: integers 0 and 1, meaning `false` and `true`, respectively

return(name)

Description: the value of the to-be-stored result \(r(name) \); see [P] `return`

\[return(name) = \text{scalar missing if the stored result does not exist} \]
\[return(name) = \text{specified matrix if the stored result is a matrix} \]
\[return(name) = \text{scalar numeric value if the stored result is a scalar} \]

Domain: names

Range: strings, scalars, matrices, or missing

s(name)

Description: the value of stored result \(s(name) \); see [U] 18.8 Accessing results calculated by other programs

\[s(name) = . \] if the stored result does not exist

Domain: names

Range: strings or missing
scalar(exp)
Description: restricts name interpretation to scalars and matrices

Names in expressions can refer to names of variables in the dataset, names of matrices, or names of scalars. Matrices and scalars can have the same names as variables in the dataset. If names conflict, Stata assumes that you are referring to the name of the variable in the dataset.

matrix() and scalar() explicitly state that you are referring to matrices and scalars. matrix() and scalar() are the same function; scalars and matrices may not have the same names and so cannot be confused. Typing scalar(x) makes it clear that you are referring to the scalar or matrix named x and not the variable named x, should there happen to be a variable of that name.

Domain: any valid expression
Range: evaluation of exp

smallestdouble()
Description: the smallest double-precision number greater than zero

If $0 < d < \text{smallestdouble}()$, then d does not have full double precision; these are called the denormalized numbers. This function takes no arguments, but the parentheses must be included.

Range: a double-precision number close to 0

References

Also see
[FN] Functions by category
[D] egen — Extensions to generate
[D] generate — Create or change contents of variable
[M-4] programming — Programming functions
[U] 13.3 Functions
Contents

- `rbeta(a,b)`
- `rbinomial(n,p)`
- `rcauchy(a,b)`
- `rchi2(df)`
- `rexponential(b)`
- `rgamma(a,b)`
- `rhypergeometric(N,K,n)`
- `rigaussian(m,a)`
- `rlaplace(m,b)`
- `rlogistic()`
- `rlogistic(s)`
- `rlogistic(m,s)`
- `rnbinomial(n,p)`
- `rnormal()`
- `rnormal(m)`
- `rnormal(m,s)`
- `rpoisson(m)`
- `rt(df)`
- `runiform()`
- `runiform(a,b)`
- `runiformint(a,b)`

Functions

- `rbeta(a,b)` random variates, where `a` and `b` are the beta distribution shape parameters
- `rbinomial(n,p)` random variates, where `n` is the number of trials and `p` is the success probability
- `rcauchy(a,b)` Cauchy random variates, where `a` is the location parameter and `b` is the scale parameter
- `rchi2(df)` chi-squared, with `df` degrees of freedom, random variates
- `rexponential(b)` exponential random variates with scale `b`
- `rgamma(a,b)` gamma random variates, where `a` is the gamma shape parameter and `b` is the scale parameter
- `rhypergeometric(N,K,n)` hypergeometric random variates
- `rigaussian(m,a)` inverse Gaussian random variates with mean `m` and shape parameter `a`
- `rlaplace(m,b)` Laplace random variates with mean `m` and scale parameter `b`
- `rlogistic()` logistic variates with mean 0 and standard deviation $\pi/\sqrt{3}$
- `rlogistic(s)` logistic variates with mean 0, scale `s`, and standard deviation $s\pi/\sqrt{3}$
- `rlogistic(m,s)` logistic variates with mean `m`, scale `s`, and standard deviation $s\pi/\sqrt{3}$
- `rnbinomial(n,p)` negative binomial random variates
- `rnormal()` standard normal (Gaussian) random variates, that is, variates from a normal distribution with a mean of 0 and a standard deviation of 1
- `rnormal(m)` (Gaussian) random variates, where `m` is the mean and the standard deviation is 1
- `rnormal(m,s)` (Gaussian) random variates, where `m` is the mean and `s` is the standard deviation
- `rpoisson(m)` Poisson random variates, where `m` is the distribution mean
- `rt(df)` Student’s `t` random variates, where `df` is the degrees of freedom
- `runiform()` uniformly distributed random variates over the interval `(0, 1)`
- `runiform(a,b)` uniformly distributed random variates over the interval `(a, b)`
- `runiformint(a,b)` uniformly distributed random integer variates on the interval `[a, b]`
Functions

The term “pseudorandom number” is used to emphasize that the numbers are generated by formulas and are thus not truly random. From now on, we will drop the “pseudo” and just say random numbers.

For information on setting the random-number seed, see [R] set seed.

\[
\begin{align*}
\text{runiform()} & \quad \text{Description: uniformly distributed random variates over the interval (0, 1)} \\
\text{runiform()} & \quad \text{can be seeded with the set seed command; see [R] set seed.} \\
\text{Range:} & \quad \epsilon\text{double} \text{ to } 1 - \epsilon\text{double}
\end{align*}
\]

\[
\begin{align*}
\text{runiform}(a, b) & \quad \text{Description: uniformly distributed random variates over the interval (a, b)} \\
\text{Domain a:} & \quad \text{mindouble} \text{ to maxdouble} \\
\text{Domain b:} & \quad \text{mindouble} \text{ to maxdouble} \\
\text{Range:} & \quad a + \epsilon\text{double} \text{ to } b - \epsilon\text{double}
\end{align*}
\]

\[
\begin{align*}
\text{runiformint}(a, b) & \quad \text{Description: uniformly distributed random integer variates on the interval [a, b]} \\
\text{If a or b is nonintegral, runiformint(a, b) returns runiformint(floor(a), floor(b)).} \\
\text{Domain a:} & \quad -2^{53} \text{ to } 2^{53} \text{ (may be nonintegral)} \\
\text{Domain b:} & \quad -2^{53} \text{ to } 2^{53} \text{ (may be nonintegral)} \\
\text{Range:} & \quad -2^{53} \text{ to } 2^{53}
\end{align*}
\]

\[
\begin{align*}
\text{rbeta}(a, b) & \quad \text{Description: beta(a,b) random variates, where a and b are the beta distribution shape parameters} \\
\text{Besides using the standard methodology for generating random variates from a given distribution, rbeta() uses the specialized algorithms of Johnk (Gentle 2003), Atkinson and Whittaker (1970, 1976), Devroye (1986), and Schmeiser and Babu (1980).} \\
\text{Domain a:} & \quad 0.05 \text{ to } 1e+5 \\
\text{Domain b:} & \quad 0.15 \text{ to } 1e+5 \\
\text{Range:} & \quad 0 \text{ to } 1 \text{ (exclusive)}
\end{align*}
\]
rbinomial(n,p)
Description: binomial(n,p) random variates, where n is the number of trials and p is the success probability
Besides using the standard methodology for generating random variates from a given distribution, rbinomial() uses the specialized algorithms of Kachitvichyanukul (1982), Kachitvichyanukul and Schmeiser (1988), and Kemp (1986).
Domain n: 1 to 1e+11
Domain p: 1e–8 to 1−1e–8
Range: 0 to n

rcauchy(a,b)
Description: Cauchy(a,b) random variates, where a is the location parameter and b is the scale parameter
Domain a: −1e+300 to 1e+300
Domain b: 1e−100 to 1e+300
Range: c(mindouble) to c(maxdouble)

rchisq(df)
Description: chi-squared, with df degrees of freedom, random variates
Domain df: 2e–4 to 2e+8
Range: 0 to c(maxdouble)

exponential(b)
Description: exponential random variates with scale b
Domain b: 1e–323 to 8e+307
Range: 1e–323 to 8e+307

rgamma(a,b)
Description: gamma(a,b) random variates, where a is the gamma shape parameter and b is the scale parameter
Methods for generating gamma variates are taken from Ahrens and Dieter (1974), Best (1983), and Schmeiser and Lal (1980).
Domain a: 1e–4 to 1e+8
Domain b: c(smallestdouble) to c(maxdouble)
Range: 0 to c(maxdouble)

rhypergeometric(N,K,n)
Description: hypergeometric random variates
The distribution parameters are integer valued, where N is the population size, K is the number of elements in the population that have the attribute of interest, and n is the sample size.
Besides using the standard methodology for generating random variates from a given distribution, rhypergeometric() uses the specialized algorithms of Kachitvichyanukul (1982) and Kachitvichyanukul and Schmeiser (1985).
Domain N: 2 to 1e+6
Domain K: 1 to N−1
Domain n: 1 to N−1
Range: max(0,n − N + K) to min(K,n)
rigaussian(m, a)
Description: inverse Gaussian random variates with mean m and shape parameter a

rigaussian() is based on a method proposed by Michael, Schucany, and Haas (1976).
Domain m: 1e–10 to 1000
Domain a: 0.001 to 1e+10
Range: 0 to c(maxdouble)

rlaplace(m, b)
Description: Laplace(m, b) random variates with mean m and scale parameter b
Domain m: −1e+300 to 1e+300
Domain b: 1e–300 to 1e+300
Range: c(mindouble) to c(maxdouble)

rlogistic()
Description: logistic variates with mean 0 and standard deviation $\pi/\sqrt{3}$

The variates x are generated by $x = \text{invlogistic}(0,1,u)$, where u is a random uniform(0,1) variate.
Range: c(mindouble) to c(maxdouble)

rlogistic(s)
Description: logistic variates with mean 0, scale s, and standard deviation $s\pi/\sqrt{3}$

The variates x are generated by $x = \text{invlogistic}(0,s,u)$, where u is a random uniform(0,1) variate.
Domain s: 0 to c(maxdouble)
Range: c(mindouble) to c(maxdouble)

rlogistic(m, s)
Description: logistic variates with mean m, scale s, and standard deviation $s\pi/\sqrt{3}$

The variates x are generated by $x = \text{invlogistic}(m,s,u)$, where u is a random uniform(0,1) variate.
Domain m: c(mindouble) to c(maxdouble)
Domain s: 0 to c(maxdouble)
Range: c(mindouble) to c(maxdouble)

rnbinomial(n, p)
Description: negative binomial random variates

If n is integer valued, rnbinomial() returns the number of failures before the nth success, where the probability of success on a single trial is p. n can also be nonintegral.
Domain n: 1e–4 to 1e+5
Domain p: 1e–4 to 1–1e–4
Range: 0 to $2^{31} - 1$
rnormal()
Description: standard normal (Gaussian) random variates, that is, variates from a normal distribution with a mean of 0 and a standard deviation of 1
Range: c(mindouble) to c(maxdouble)

rnormal(m)
Description: normal(m,1) (Gaussian) random variates, where m is the mean and the standard deviation is 1
Domain m: c(mindouble) to c(maxdouble)
Range: c(mindouble) to c(maxdouble)

rnormal(m,s)
Description: normal(m,s) (Gaussian) random variates, where m is the mean and s is the standard deviation
The methods for generating normal (Gaussian) random variates are taken from Knuth (1998, 122–128); Marsaglia, MacLaren, and Bray (1964); and Walker (1977).
Domain m: c(mindouble) to c(maxdouble)
Domain s: 0 to c(maxdouble)
Range: c(mindouble) to c(maxdouble)

rpoisson(m)
Description: Poisson(m) random variates, where m is the distribution mean
Poisson variates are generated using the probability integral transform methods of Kemp and Kemp (1990, 1991) and the method of Kachitvichyanukul (1982).
Domain m: 1e–6 to 1e+11
Range: 0 to 2^{53} – 1

rt(df)
Description: Student’s t random variates, where df is the degrees of freedom
Student’s t variates are generated using the method of Kinderman and Monahan (1977, 1980).
Domain df: 1 to 2^{53} – 1
Range: c(mindouble) to c(maxdouble)

rweibull(a,b)
Description: Weibull variates with shape a and scale b
The variates x are generated by x = invweibulltail(a,b,0,u), where u is a random uniform(0,1) variate.
Domain a: 0.01 to 1e+6
Domain b: 1e–323 to 8e+307
Range: 1e–323 to 8e+307
rweibull(a, b, g)

Description: Weibull variates with shape a, scale b, and location g

The variates x are generated by $x = \text{invweibulltail}(a, b, g, u)$, where u is a random uniform(0,1) variate.

Domain a: 0.01 to 1e+6
Domain b: 1e–323 to 8e+307
Domain g: $-8e+307$ to $8e+307$
Range: $g + c(\text{epsdouble})$ to 8e+307

rweibullph(a, b)

Description: Weibull (proportional hazards) variates with shape a and scale b

The variates x are generated by $x = \text{invweibullphtail}(a, b, 0, u)$, where u is a random uniform(0,1) variate.

Domain a: 0.01 to 1e+6
Domain b: 1e–323 to 8e+307
Range: 1e–323 to 8e+307

rweibullph(a, b, g)

Description: Weibull (proportional hazards) variates with shape a, scale b, and location g

The variates x are generated by $x = \text{invweibullphtail}(a, b, g, u)$, where u is a random uniform(0,1) variate.

Domain a: 0.01 to 1e+6
Domain b: 1e–323 to 8e+307
Domain g: $-8e+307$ to $8e+307$
Range: $g + c(\text{epsdouble})$ to 8e+307

Remarks and examples

It is ironic that the first thing to note about random numbers is how to make them reproducible. Before using a random-number function, type

```
set seed #
```

where # is any integer between 0 and $2^{31} - 1$, inclusive, to draw the same sequence of random numbers. It does not matter which integer you choose as your seed; they are all equally good. See [R] set seed.

`runiform()` is the basis for all the other random-number functions because all the other random-number functions transform uniform $(0, 1)$ random numbers to the specified distribution.

`runiform()` implements the 64-bit Mersenne Twister (mt64), the stream 64-bit Mersenne Twister (mt64s), and the 32-bit “keep it simple stupid” (kiss32) random-number generators (RNGs) for generating uniform $(0, 1)$ random numbers. `runiform()` uses the mt64 RNG by default.

`runiform()` uses the kiss32 RNG only when the user version is less than 14 or when the RNG has been set to kiss32; see [P] version for details about setting the user version. We recommend that you do not change the default RNG, but see [R] set rng for details.
Although we recommend that you use `runiform()`, we made generator-specific versions of `runiform()` available for advanced users who want to hardcode their generator choice. The function `runiform_mt64()` always uses the mt64 RNG to generate uniform \((0, 1)\) random numbers, the function `runiform_mt64s()` always uses the mt64s RNG to generate uniform \((0, 1)\) random numbers, the function `runiform_kiss32()` always uses the kiss32 RNG to generate uniform \((0, 1)\) random numbers. In fact, generator-specific versions are available for all the implemented distributions. For example, `rnormal_mt64()`, `rnormal_mt64s`, and `rnormal_kiss32()` use transforms of mt64, mt64s, and kiss32 uniform variates, respectively, to generate standard normal variates.

Both the mt64 and the kiss32 RNGs produce uniform variates that pass many tests for randomness. Many researchers prefer the mt64 to the kiss32 RNG because the mt64 generator has a longer period and a finer resolution and requires a higher dimension before patterns appear; see Matsumoto and Nishimura (1998). The mt64 RNG has a period of \(2^{19937} - 1\) and a resolution of \(2^{-53}\); see Matsumoto and Nishimura (1998). Each stream of the mt64s RNG contains \(2^{128}\) random numbers, and mt64s has a resolution of \(2^{-53}\); see Haramoto et al. (2008). The kiss32 RNG has a period of about \(2^{126}\) and a resolution of \(2^{-32}\); see Methods and formulas below.

This technical note explains how to restart a RNG from its current spot.

The current spot in the sequence of a RNG is part of the state of a RNG. If you tell me the state of a RNG, I know where it is in its sequence, and I can compute the next random number. The state of a RNG is a complicated object that requires more space than the integers used to seed a generator. For instance, an mt64 state is a 5011-digit, base-16 number preceded by three letters.

If you want to restart a RNG from where it left off, you should store the current state in a macro and then set the state of the RNG when you want to restart it. For example, suppose we set a seed and draw some random numbers.

```
. set obs 3
    number of observations (N) was 0, now 3
. set seed 12345
. generate x = runiform()
. list x
    +--------+
    | x      |
    |--------|
    | 1. .3576297|
    | 2. .4004426|
    | 3. .6893833|
    +--------+
```
We store the state of the RNG so that we can pick up right here in the sequence.

```
local rngstate "c(rngstate)"
```

We draw some more random numbers.

```
replace x = runiform()
(3 real changes made)
list x
```

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
</tbody>
</table>

Now, we set the state of the RNG to where it was and draw those same random numbers again.

```
set rngstate 'rngstate'
replace x = runiform()
(0 real changes made)
list x
```

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
</tbody>
</table>

Methods and formulas

All the nonuniform generators are based on the uniform mt64, mt64s, and kiss32 RNGs.

The mt64 RNG is well documented in Matsumoto and Nishimura (1998) and on their website http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html. The mt64 RNG implements the 64-bit version discussed at http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html. The mt64s RNG is based on a method proposed by Haramoto et al. (2008). The default seed of all three RNGs is 123456789.

kiss32 generator

The kiss32 uniform RNG implemented in runiform() is based on George Marsaglia’s (G. Marsaglia, 1994, pers. comm.) 32-bit pseudorandom-integer generator kiss32. The integer kiss32 RNG is composed of two 32-bit pseudorandom-integer generators and two 16-bit integer generators (combined to make one 32-bit integer generator). The four generators are defined by the recursions

\[
x_n = 69069 \times x_{n-1} + 1234567 \mod 2^{32}
\]
\[
y_n = y_{n-1}(I + L^{13})(I + R^{17})(I + L^5)
\]
\[
z_n = 65184\left(z_{n-1} \mod 2^{16}\right) + \text{int}\left(z_{n-1}/2^{16}\right)
\]
\[
w_n = 63663\left(w_{n-1} \mod 2^{16}\right) + \text{int}\left(w_{n-1}/2^{16}\right)
\]
In (2), the 32-bit word y_n is viewed as a 1×32 binary vector; L is the 32×32 matrix that produces a left shift of one (L has 1s on the first left subdiagonal, 0s elsewhere); and R is L transpose, affecting a right shift by one. In (3) and (4), $\text{int}(x)$ is the integer part of x.

The integer kiss32 RNG produces the 32-bit random integer

$$R_n = x_n + y_n + z_n + 2^{16} w_n \mod 2^{32}$$

The kiss32 uniform RNG implemented in runiform() takes the output from the integer kiss32 RNG and divides it by 2^{32} to produce a real number on the interval $(0, 1)$. (Zeros are discarded, and the first nonzero result is returned.)

The recursion (5)–(8) have, respectively, the periods

$$2^{32}$$

$$2^{32} - 1$$

$$\frac{(65184 \cdot 2^{16} - 2)}{2} \approx 2^{31}$$

$$\frac{(63663 \cdot 2^{16} - 2)}{2} \approx 2^{31}$$

Thus the overall period for the integer kiss32 RNG is

$$2^{32} \cdot (2^{32} - 1) \cdot (65184 \cdot 2^{15} - 1) \cdot (63663 \cdot 2^{15} - 1) \approx 2^{126}$$

When Stata first comes up, it initializes the four recursions in kiss32 by using the seeds

$$x_0 = 123456789$$
$$y_0 = 521288629$$
$$z_0 = 362436069$$
$$w_0 = 2262615$$

Successive calls to the kiss32 uniform RNG implemented in runiform() then produce the sequence

$$\frac{R_1}{2^{32}}, \frac{R_2}{2^{32}}, \frac{R_3}{2^{32}}, \cdots$$

Hence, the kiss32 uniform RNG implemented in runiform() gives the same sequence of random numbers in every Stata session (measured from the start of the session) unless you reinitialize the seed. The full seed is the set of four numbers (x, y, z, w), but you can reinitialize the seed by simply issuing the command

```
.set seed #
```

where # is any integer between 0 and $2^{31} - 1$, inclusive. When this command is issued, the initial value x_0 is set equal to #, and the other three recursions are restarted at the seeds y_0, z_0, w_0 given above. The first 100 random numbers are discarded, and successive calls to the kiss32 uniform RNG implemented in runiform() give the sequence

$$\frac{R'_{101}}{2^{32}}, \frac{R'_{102}}{2^{32}}, \frac{R'_{103}}{2^{32}}, \cdots$$
However, if the command

```
  . set seed 123456789
```

is given, the first 100 random numbers are not discarded, and you get the same sequence of random numbers that the `kiss32` RNG produces when Stata restarts; also see [R] set seed.

Acknowledgments

We thank the late George Marsaglia, formerly of Florida State University, for providing his `kiss32` RNG.

We thank John R. Gleason (retired) of Syracuse University for directing our attention to Wichura (1988) for calculating the cumulative normal density accurately, for sharing his experiences about techniques with us, and for providing C code to make the calculations.

We thank Makoto Matsumoto and Takuji Nishimura for deriving the Mersenne Twister and distributing their code for their generator so that it could be rapidly and effectively tested.

References

Also see

[FN] **Functions by category**

[D] _egen_ — Extensions to generate

[D] _generate_ — Create or change contents of variable

[R] _set rng_ — Set which random-number generator (RNG) to use

[R] _set rngstream_ — Specify the stream for the stream random-number generator

[R] _set seed_ — Specify random-number seed and state

[M-5] _runiform()_ — Uniform and nonuniform pseudorandom variates

[U] **13.3 Functions**
Selecting time-span functions

Contents

tin(d_1,d_2) \quad true if \ d_1 \leq t \leq d_2, where \ t \ is \ the \ time \ variable \ previously \ tsset

twithin(d_1,d_2) \quad true if \ d_1 < t < d_2, where \ t \ is \ the \ time \ variable \ previously \ tsset

Functions

\textbf{tin}(d_1,d_2)

Description: \ true if \ d_1 \leq t \leq d_2, where \ t \ is \ the \ time \ variable \ previously \ tsset

You must have previously tsset the data to use \text{tin}(); see [TS] \texttt{tsset}. When you \text{tsset} the data, you specify a time variable, \(t \), and the format on \(t \) states how it is recorded. You type \(d_1 \) and \(d_2 \) according to that format.

If \(t \) has a \%tc format, you could type \text{tin}(5jan1992 11:15, 14apr2002 12:25).

If \(t \) has a \%td format, you could type \text{tin}(5jan1992, 14apr2002).

If \(t \) has a \%tw format, you could type \text{tin}(1985w1, 2002w15).

If \(t \) has a \%tm format, you could type \text{tin}(1985m1, 2002m4).

If \(t \) has a \%tq format, you could type \text{tin}(1985q1, 2002q2).

If \(t \) has a \%th format, you could type \text{tin}(1985h1, 2002h1).

If \(t \) has a \%ty format, you could type \text{tin}(1985, 2002).

Otherwise, \(t \) is just a set of integers, and you could type \text{tin}(12, 38).

The details of the \%t format do not matter. If your \(t \) is formatted \%tdnn/dd/yy so that 5jan1992 displays as 1/5/92, you would still type the date in day–month–year order: \text{tin}(5jan1992, 14apr2002).

\textbf{Domain} \(d_1 \): date or time literals or strings recorded in units of \(t \) previously \texttt{tsset} or blank to indicate no minimum date

\textbf{Domain} \(d_2 \): date or time literals or strings recorded in units of \(t \) previously \texttt{tsset} or blank to indicate no maximum date

\textbf{Range}: 0 and 1, 1 \Rightarrow \text{true}

\textbf{twithin}(d_1,d_2)

Description: \ true if \ d_1 < t < d_2, where \ t \ is \ the \ time \ variable \ previously \ tsset

See \text{tin}() \ above; \text{twithin}() \ is \ similar, except the range is exclusive.

\textbf{Domain} \(d_1 \): date or time literals or strings recorded in units of \(t \) previously \texttt{tsset} or blank to indicate no minimum date

\textbf{Domain} \(d_2 \): date or time literals or strings recorded in units of \(t \) previously \texttt{tsset} or blank to indicate no maximum date

\textbf{Range}: 0 and 1, 1 \Rightarrow \text{true}

82
Also see

[FN] Functions by category

[D] egen — Extensions to generate

[D] generate — Create or change contents of variable

[U] 13.3 Functions
betaden(a, b, x) the probability density of the beta distribution, where a and b are the shape parameters; 0 if $x < 0$ or $x > 1$

binomial(n, k, θ) the probability of observing floor(k) or fewer successes in floor(n) trials when the probability of a success on one trial is θ; 0 if $k < 0$; or 1 if $k > n$

binomialp(n, k, p) the probability of observing floor(k) successes in floor(n) trials when the probability of a success on one trial is p

binomialrtail(n, k, θ) the probability of observing floor(k) or more successes in floor(n) trials when the probability of a success on one trial is θ; 1 if $k < 0$; or 0 if $k > n$

binormal(h, k, ρ) the joint cumulative distribution $\Phi(h, k, \rho)$ of bivariate normal with correlation ρ

cauhy(a, b, x) the cumulative Cauchy distribution with location parameter a and scale parameter b

cauhyden(a, b, x) the probability density of the Cauchy distribution with location parameter a and scale parameter b

cauhyrtail(a, b, x) the reverse cumulative (upper tail or survivor) Cauchy distribution with location parameter a and scale parameter b

chi2(df, x) the cumulative χ^2 distribution with df degrees of freedom; 0 if $x < 0$

chi2den(df, x) the probability density of the chi-squared distribution with df degrees of freedom; 0 if $x < 0$

chi2rtail(df, x) the reverse cumulative (upper tail or survivor) χ^2 distribution with df degrees of freedom; 1 if $x < 0$

dgammapda(a, x) $\frac{\partial P(a, x)}{\partial a}$, where $P(a, x) = \text{gammap}(a, x)$; 0 if $x < 0$

dgammapdada(a, x) $\frac{\partial^2 P(a, x)}{\partial a^2}$, where $P(a, x) = \text{gammap}(a, x)$; 0 if $x < 0$

dgammapdadx(a, x) $\frac{\partial^2 P(a, x)}{\partial a \partial x}$, where $P(a, x) = \text{gammap}(a, x)$; 0 if $x < 0$

dgammapdax(a, x) $\frac{\partial P(a, x)}{\partial x}$, where $P(a, x) = \text{gammap}(a, x)$; 0 if $x < 0$

dgammapdxdx(a, x) $\frac{\partial^2 P(a, x)}{\partial x^2}$, where $P(a, x) = \text{gammap}(a, x)$; 0 if $x < 0$

dunnettprob(k, df, x) the cumulative multiple range distribution that is used in Dunnett’s multiple-comparison method with k ranges and df degrees of freedom; 0 if $x < 0$

exponential(b, x) the cumulative exponential distribution with scale b

exponentialden(b, x) the probability density function of the exponential distribution with scale b

exponentialrtail(b, x) the reverse cumulative exponential distribution with scale b
\(F(df_1, df_2, f) \) the cumulative \(F \) distribution with \(df_1 \) numerator and \(df_2 \) denominator degrees of freedom:
\[
F(df_1, df_2, f) = \int_0^f \frac{df \cdot df_2}{f^2}
\]
0 if \(f < 0 \)

\(Fden(df_1, df_2, f) \) the probability density function of the \(F \) distribution with \(df_1 \) numerator and \(df_2 \) denominator degrees of freedom; 0 if \(f < 0 \)

\(Ftail(df_1, df_2, f) \) the reverse cumulative (upper tail or survivor) \(F \) distribution with \(df_1 \) numerator and \(df_2 \) denominator degrees of freedom; 1 if \(f < 0 \)

\(gammaden(a, b, g, x) \) the probability density function of the gamma distribution; 0 if \(x < g \)

\(gammap(a, x) \) the cumulative gamma distribution with shape parameter \(a \); 0 if \(x < 0 \)

\(gammaptail(a, x) \) the reverse cumulative (upper tail or survivor) gamma distribution with shape parameter \(a \); 1 if \(x < 0 \)

\(hypergeometric(N, K, n, k) \) the cumulative probability of the hypergeometric distribution

\(hypergeometricp(N, K, n, k) \) the hypergeometric probability of \(k \) successes out of a sample of size \(n \), from a population of size \(N \) containing \(K \) elements that have the attribute of interest

\(ibeta(a, b, x) \) the cumulative beta distribution with shape parameters \(a \) and \(b \); 0 if \(x < 0 \); or 1 if \(x > 1 \)

\(ibetatail(a, b, x) \) the reverse cumulative (upper tail or survivor) beta distribution with shape parameters \(a \) and \(b \); 1 if \(x < 0 \); or 0 if \(x > 1 \)

\(igaussian(m, a, x) \) the cumulative inverse Gaussian distribution with mean \(m \) and shape parameter \(a \); 0 if \(x \leq 0 \)

\(igaussianden(m, a, x) \) the probability density of the inverse Gaussian distribution with mean \(m \) and shape parameter \(a \); 0 if \(x \leq 0 \)

\(igaussiantail(m, a, x) \) the reverse cumulative (upper tail or survivor) inverse Gaussian distribution with mean \(m \) and shape parameter \(a \); 1 if \(x \leq 0 \)

\(invbinomial(n, k, p) \) the inverse of the cumulative binomial; that is, \(\theta (\theta = \) probability of success on one trial) such that the probability of observing \(\text{floor}(k) \) or fewer successes in \(\text{floor}(n) \) trials is \(p \)

\(invbinomialtail(n, k, p) \) the inverse of the right cumulative binomial; that is, \(\theta (\theta = \) probability of success on one trial) such that the probability of observing \(\text{floor}(k) \) or more successes in \(\text{floor}(n) \) trials is \(p \)

\(invcauchy(a, b, p) \) the inverse of cauchy(): if cauchy\((a, b, x) = p\), then \(invcauchy(a, b, p) = x \)

\(invcauchytail(a, b, p) \) the inverse of cauchytail(): if cauchytail\((a, b, x) = p\), then \(invcauchytail(a, b, p) = x \)

\(invchi2(df, p) \) the inverse of chi2(): if \(\chi^2(df, x) = p \), then \(invchi2(df, p) = x \)

\(invchi2tail(df, p) \) the inverse of chi2tail(): if \(\chi^2tail(df, x) = p \), then \(invchi2tail(df, p) = x \)

\(invdunnettprob(k, df, p) \) the inverse cumulative multiple range distribution that is used in Dunnett’s multiple-comparison method with \(k \) ranges and \(df \) degrees of freedom

\(invexponential(b, p) \) the inverse cumulative exponential distribution with scale \(b \); if \(\exp\(b, x) = p \), then \(invexponential(b, p) = x \)
invexponentialtail(b, p) the inverse reverse cumulative exponential distribution with scale b:
if exponentialtail(b, x) = p, then
invexponentialtail(b, p) = x

invF(df_1, df_2, p) the inverse cumulative F distribution: if $F(df_1, df_2, f) = p$, then
invF(df_1, df_2, p) = f

invFtail(df_1, df_2, p) the inverse reverse cumulative (upper tail or survivor) F distribution:
if Ftail($df_1, df_2, f) = p$, then invFtail(df_1, df_2, p) = f

invgammap(a, p) the inverse cumulative gamma distribution: if gammap(a, x) = p,
then invgammap(a, p) = x

invgammaptail(a, p) the inverse reverse cumulative (upper tail or survivor) gamma distribution:
if gammaptail(a, x) = p, then invgammaptail(a, p) = x

invbeta(a, b, p) the inverse cumulative beta distribution: if ibeta(a, b, x) = p,
then invbeta(a, b, p) = x

invbetatail(a, b, p) the inverse reverse cumulative (upper tail or survivor) beta distribution:
if ibetatail(a, b, x) = p, then invbetatail(a, b, p) = x

invgaussian(m, a, p) the inverse of igaussian(): if
igaussian(m, a, x) = p, then invgaussian(m, a, p) = x

invgaussianiantail(m, a, p) the inverse of igaussianiantail(): if
igaussianiantail(m, a, x) = p, then
invgaussianiantail(m, a, p) = x

invlaplace(m, b, p) the inverse of laplace(): if laplace(m, b, x) = p,
then invlaplace(m, b, p) = x

invlaplacetail(m, b, p) the inverse of laplacetail(): if laplacetail(m, b, x) = p,
then invlaplacetail(m, b, p) = x

invlogistic(p) the inverse cumulative logistic distribution: if logistic(x) = p,
then invlogistic(p) = x

invlogistic(s, p) the inverse cumulative logistic distribution: if logistic(s, x) = p,
then invlogistic(s, p) = x

invlogistic(m, s, p) the inverse cumulative logistic distribution: if logistic(m, s, x) = p,
then invlogistic(m, s, p) = x

invlogistictail(p) the inverse reverse cumulative logistic distribution: if
logistictail(x) = p, then invlogistictail(p) = x

invlogistictail(s, p) the inverse reverse cumulative logistic distribution: if
logistictail(s, x) = p, then invlogistictail(s, p) = x

invlogistictail(m, s, p) the inverse reverse cumulative logistic distribution: if
logistictail(m, s, x) = p, then
invlogistictail(m, s, p) = x

invnbinomial(n, k, q) the value of the negative binomial parameter, p, such that q =
nbinomial(n, k, p)

invnbinomialtail(n, k, q) the value of the negative binomial parameter, p, such that
q = nbinomialtail(n, k, p)

invchi2(df, np, p) the inverse cumulative noncentral χ^2 distribution: if
nchi2(df, np, x) = p, then invnchi2(df, np, p) = x

invchi2tail(df, np, p) the inverse reverse cumulative (upper tail or survivor) non-
central χ^2 distribution: if nchi2tail(df, np, x) = p, then
invchi2tail(df, np, p) = x
invFtail\((df_1, df_2, np, p)\) the inverse cumulative noncentral \(F\) distribution: if
\(F(df_1, df_2, np, p) = f \), then \(\text{invF}\(df_1, df_2, np, p\) = f \)

invFtail\((df_1, df_2, np, p)\) the inverse reverse cumulative (upper tail or survivor) noncentral \(F\) distribution: if \(Ftail(df_1, df_2, np, x) = p \), then
\(\text{invFtail}\(df_1, df_2, np, p\) = x \)

invibeta\((a, b, np, p)\) the inverse cumulative noncentral beta distribution: if
\(\beta(a, b, np, x) = p \), then \(\text{invibeta}\(a, b, np, p\) = x \)

invt\((df, np, p)\) the inverse cumulative noncentral Student’s \(t\) distribution: if
\(t(df, np, t) = p \), then \(\text{invnt}\(df, np, p\) = t \)

invt\((df, np, p)\) the inverse reverse cumulative (upper tail or survivor) noncentral Student’s \(t\) distribution: if \(ttail(df, np, t) = p \), then
\(\text{invt}\(df, np, p\) = t \)

invpoisson\((k, p)\) the Poisson mean such that the cumulative Poisson distribution evaluated at \(k \) is \(p \): if \(\text{poisson}(m, k) = p \), then
\(\text{invpoisson}(k, p) = m \)

invpoissontail\((k, q)\) the Poisson mean such that the reverse cumulative Poisson distribution evaluated at \(k \) is \(q \): if \(\text{poissontail}(m, k) = q \), then
\(\text{invpoissontail}(k, q) = m \)

invt\((df, p)\) the inverse cumulative Student’s \(t\) distribution: if \(t(df, t) = p \), then
\(\text{invt}(df, p) = t \)

invt\((df, p)\) the inverse reverse cumulative (upper tail or survivor) Student’s \(t\) distribution: if \(ttail(df, t) = p \), then
\(\text{invttail}(df, p) = t \)

invtukeyprob\((k, df, p)\) the inverse cumulative Tukey’s Studentized range distribution with \(k \) ranges and \(df \) degrees of freedom

invweibull\((a, b, p)\) the inverse cumulative Weibull distribution with shape \(a \) and scale \(b \): if \(\text{weibull}(a, b, x) = p \), then
\(\text{invweibull}(a, b, p) = x \)

invweibull\((a, b, g, p)\) the inverse cumulative Weibull distribution with shape \(a \), scale \(b \), and location \(g \): if \(\text{weibull}(a, b, g, x) = p \), then
\(\text{invweibull}(a, b, g, p) = x \)

invweibullph\((a, b, p)\) the inverse cumulative Weibull (proportional hazards) distribution with shape \(a \) and scale \(b \): if \(\text{weibullph}(a, b, x) = p \), then
\(\text{invweibullph}(a, b, p) = x \)

invweibullph\((a, b, g, p)\) the inverse cumulative Weibull (proportional hazards) distribution with shape \(a \), scale \(b \), and location \(g \): if \(\text{weibullph}(a, b, g, x) = p \), then
\(\text{invweibullph}(a, b, g, p) = x \)

invweibullphtail\((a, b, p)\) the inverse reverse cumulative Weibull (proportional hazards) distribution with shape \(a \) and scale \(b \): if \(\text{weibullphtail}(a, b, x) = p \), then
\(\text{invweibullphtail}(a, b, p) = x \)

invweibullphtail\((a, b, g, p)\) the inverse reverse cumulative Weibull (proportional hazards) distribution with shape \(a \), scale \(b \), and location \(g \): if \(\text{weibullphtail}(a, b, g, x) = p \), then
\(\text{invweibullphtail}(a, b, g, p) = x \)

invweibulltail\((a, b, p)\) the inverse reverse cumulative Weibull distribution with shape \(a \) and scale \(b \): if \(\text{weibulltail}(a, b, x) = p \), then
\(\text{invweibulltail}(a, b, p) = x \)

invweibulltail\((a, b, g, p)\) the inverse reverse cumulative Weibull distribution with shape \(a \), scale \(b \), and location \(g \): if \(\text{weibulltail}(a, b, g, x) = p \), then
\(\text{invweibulltail}(a, b, g, p) = x \)
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>laplace(m, b, x)</td>
<td>the cumulative Laplace distribution with mean m and scale parameter b</td>
</tr>
<tr>
<td>laplaceden(m, b, x)</td>
<td>the probability density of the Laplace distribution with mean m and scale parameter b</td>
</tr>
<tr>
<td>placetail(m, b, x)</td>
<td>the reverse cumulative (upper tail or survivor) Laplace distribution with mean m and scale parameter b</td>
</tr>
<tr>
<td>lncauchyden(a, b, x)</td>
<td>the natural logarithm of the density of the Cauchy distribution with location parameter a and scale parameter b</td>
</tr>
<tr>
<td>lnigammaden(a, b, x)</td>
<td>the natural logarithm of the inverse gamma density, where a is the shape parameter and b is the scale parameter</td>
</tr>
<tr>
<td>lnigauussianden(m, a, x)</td>
<td>the natural logarithm of the inverse Gaussian density with mean m and scale parameter a</td>
</tr>
<tr>
<td>lnwishartden(df, V, X)</td>
<td>the natural logarithm of the density of the inverse Wishart distribution; missing if $df \leq n - 1$</td>
</tr>
<tr>
<td>lnlnplaceden(m, b, x)</td>
<td>the natural logarithm of the density of the Laplace distribution with mean m and scale parameter b</td>
</tr>
<tr>
<td>lmvnormalden(M, V, X)</td>
<td>the natural logarithm of the multivariate normal density</td>
</tr>
<tr>
<td>lnnormal(z)</td>
<td>the natural logarithm of the cumulative standard normal distribution</td>
</tr>
<tr>
<td>lnnormalden(z)</td>
<td>the natural logarithm of the standard normal density, $N(0, 1)$</td>
</tr>
<tr>
<td>lnnormalden(x, σ)</td>
<td>the natural logarithm of the normal density with mean 0 and standard deviation σ</td>
</tr>
<tr>
<td>lnlnnormalden(x, μ, σ)</td>
<td>the natural logarithm of the normal density with mean μ and standard deviation σ, $N(\mu, \sigma^2)$</td>
</tr>
<tr>
<td>lnwishartden(df, V, X)</td>
<td>the natural logarithm of the density of the Wishart distribution; missing if $df \leq n - 1$</td>
</tr>
<tr>
<td>logistic(x)</td>
<td>the cumulative logistic distribution with mean 0 and standard deviation $\pi/\sqrt{3}$</td>
</tr>
<tr>
<td>logistic(s, x)</td>
<td>the cumulative logistic distribution with mean 0, scale s, and standard deviation $s\pi/\sqrt{3}$</td>
</tr>
<tr>
<td>logistic(m, s, x)</td>
<td>the cumulative logistic distribution with mean m, scale s, and standard deviation $s\pi/\sqrt{3}$</td>
</tr>
<tr>
<td>logisticden(x)</td>
<td>the density of the logistic distribution with mean 0 and standard deviation $\pi/\sqrt{3}$</td>
</tr>
<tr>
<td>logisticden(s, x)</td>
<td>the density of the logistic distribution with mean 0, scale s, and standard deviation $s\pi/\sqrt{3}$</td>
</tr>
<tr>
<td>logisticden(m, s, x)</td>
<td>the density of the logistic distribution with mean m, scale s, and standard deviation $s\pi/\sqrt{3}$</td>
</tr>
<tr>
<td>logistictail(x)</td>
<td>the reverse cumulative logistic distribution with mean 0 and standard deviation $\pi/\sqrt{3}$</td>
</tr>
<tr>
<td>logistictail(s, x)</td>
<td>the reverse cumulative logistic distribution with mean 0, scale s, and standard deviation $s\pi/\sqrt{3}$</td>
</tr>
<tr>
<td>logistictail(m, s, x)</td>
<td>the reverse cumulative logistic distribution with mean m, scale s, and standard deviation $s\pi/\sqrt{3}$</td>
</tr>
<tr>
<td>nbetaden(a, b, np, x)</td>
<td>the probability density function of the noncentral beta distribution; 0 if $x < 0$ or $x > 1$</td>
</tr>
<tr>
<td>nbinomial(n, k, p)</td>
<td>the cumulative probability of the negative binomial distribution</td>
</tr>
</tbody>
</table>
nbinomialp(n, k, p) the negative binomial probability
nbinomialtail(n, k, p) the reverse cumulative probability of the negative binomial distribution
nchi2(df, np, x) the cumulative noncentral χ^2 distribution; 0 if $x < 0$
nchi2den(df, np, x) the probability density of the noncentral χ^2 distribution; 0 if $x < 0$
nchi2tail(df, np, x) the reverse cumulative (upper tail or survivor) noncentral χ^2 distribution; 1 if $x < 0$
nF(df1, df2, np, f) the cumulative noncentral F distribution with df_1 numerator and df_2 denominator degrees of freedom and noncentrality parameter $np; 0$ if $f < 0$
nFden(df1, df2, np, f) the probability density function of the noncentral F distribution with df_1 numerator and df_2 denominator degrees of freedom and noncentrality parameter $np; 0$ if $f < 0$
nFtail(df1, df2, np, f) the reverse cumulative (upper tail or survivor) noncentral F distribution with df_1 numerator and df_2 denominator degrees of freedom and noncentrality parameter $np; 1$ if $f < 0$
nbeta(a, b, np, x) the cumulative noncentral beta distribution; 0 if $x < 0$; or 1 if $x > 1$
normal(z) the cumulative standard normal distribution
normalden(z) the standard normal density, $N(0, 1)$
normalden(x, σ) the normal density with mean 0 and standard deviation σ
normalden(x, μ, σ) the normal density with mean μ and standard deviation σ, $N(\mu, \sigma^2)$
npnchi2(dx, np) the noncentrality parameter, np, for noncentral χ^2; if $\text{nchi2}(dx, np, x) = p$, then $\text{nppnchi2}(dx, np, x) = np$
npnF(df1, df2, f, np) the noncentrality parameter, np, for the noncentral F: if $\text{nF}(df1, df2, np, f) = p$, then $\text{nppnF}(df1, df2, f, np) = np$
npnt(df, t, np) the noncentrality parameter, np, for the noncentral Student’s t distribution: if $\text{nt}(df, np, t) = p$, then $\text{nppnt}(df, t, np) = np$
nt(df, np, t) the cumulative noncentral Student’s t distribution with df degrees of freedom and noncentrality parameter np
ntden(df, np, t) the probability density function of the noncentral Student’s t distribution with df degrees of freedom and noncentrality parameter np
ntail(df, np, t) the reverse cumulative (upper tail or survivor) noncentral Student’s t distribution with df degrees of freedom and noncentrality parameter np
poisson(m, k) the probability of observing $\text{floor}(k)$ or fewer outcomes that are distributed as Poisson with mean m
poissonp(m, k) the probability of observing $\text{floor}(k)$ outcomes that are distributed as Poisson with mean m
poissontail(m, k) the probability of observing $\text{floor}(k)$ or more outcomes that are distributed as Poisson with mean m
t(df, t) the cumulative Student’s t distribution with df degrees of freedom
tden(df, t) the probability density function of Student’s t distribution
ttail(df, t) the reverse cumulative (upper tail or survivor) Student’s t distribution; the probability $T > t$
tukeyprob(k, df, x) the cumulative Tukey’s Studentized range distribution with k ranges and df degrees of freedom; 0 if $x < 0$
weibull(a,b,x) the cumulative Weibull distribution with shape a and scale b
weibull(a,b,g,x) the cumulative Weibull distribution with shape a, scale b, and location g
weibullden(a,b,x) the probability density function of the Weibull distribution with shape a and scale b
weibullden(a,b,g,x) the probability density function of the Weibull distribution with shape a, scale b, and location g
weibullph(a,b,x) the cumulative Weibull (proportional hazards) distribution with shape a and scale b
weibullph(a,b,g,x) the cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g
weibullphden(a,b,x) the probability density function of the Weibull (proportional hazards) distribution with shape a and scale b
weibullphden(a,b,g,x) the probability density function of the Weibull (proportional hazards) distribution with shape a, scale b, and location g
weibullphtail(a,b,x) the reverse cumulative Weibull (proportional hazards) distribution with shape a and scale b
weibullphtail(a,b,g,x) the reverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g
weibulltail(a,b,x) the reverse cumulative Weibull distribution with shape a and scale b
weibulltail(a,b,g,x) the reverse cumulative Weibull distribution with shape a, scale b, and location g
Functions

Statistical functions are listed alphabetically under the following headings:

Beta and noncentral beta distributions
Binomial distribution
Cauchy distribution
Chi-squared and noncentral chi-squared distributions
Dunnett’s multiple range distribution
Exponential distribution
F and noncentral F distributions
Gamma distribution
Hypergeometric distribution
Inverse Gaussian distribution
Laplace distribution
Logistic distribution
Negative binomial distribution
Normal (Gaussian), binormal, and multivariate normal distributions
Poisson distribution
Student’s t and noncentral Student’s t distributions
Tukey’s Studentized range distribution
Weibull distribution
Weibull (proportional hazards) distribution
Wishart distribution

Beta and noncentral beta distributions

betaden(a, b, x)

Description: the probability density of the beta distribution, where a and b are the shape parameters; 0 if x < 0 or x > 1

The probability density of the beta distribution is

\[\text{betaden}(a, b, x) = \frac{x^{a-1}(1-x)^{b-1}}{\int_0^\infty t^{a-1}(1-t)^{b-1}dt} = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1} \]

Domain a: 1e−323 to 8e+307
Domain b: 1e−323 to 8e+307
Domain x: −8e+307 to 8e+307; interesting domain is 0 ≤ x ≤ 1
Range: 0 to 8e+307
ibeta(a,b,x)
Description: the cumulative beta distribution with shape parameters a and b; 0 if x < 0; or 1 if x > 1

The cumulative beta distribution with shape parameters a and b is defined by

\[I_x(a,b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \int_0^x t^{a-1}(1-t)^{b-1} dt \]

ibeta() returns the regularized incomplete beta function, also known as the incomplete beta function ratio. The incomplete beta function without regularization is given by \((\text{gamma}(a)\times\text{gamma}(b))/\text{gamma}(a+b))\times ibeta(a,b,x)\) or, better when a or b might be large, \(\exp(lngamma(a)+lngamma(b)-lngamma(a+b))\times ibeta(a,b,x)\).

Here is an example of the use of the regularized incomplete beta function. Although Stata has a cumulative binomial function (see binomial()), the probability that an event occurs k or fewer times in n trials, when the probability of one event is p, can be evaluated as \(\text{cond}(k==n,1,1-ibeta(k+1,n-k,p))\). The reverse cumulative binomial (the probability that an event occurs k or more times) can be evaluated as \(\text{cond}(k==0,1,ibeta(k,n-k+1,p))\). See Press et al. (2007, 270–273) for a more complete description and for suggested uses for this function.

Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain x: –8e+307 to 8e+307; interesting domain is 0 ≤ x ≤ 1
Range: 0 to 1

ibetatail(a,b,x)
Description: the reverse cumulative (upper tail or survivor) beta distribution with shape parameters a and b; 1 if x < 0; or 0 if x > 1

The reverse cumulative (upper tail or survivor) beta distribution with shape parameters a and b is defined by

\[\text{ibetatail}(a,b,x) = 1 - \text{ibeta}(a,b,x) = \int_x^1 \text{betaden}(a,b,t) \, dt \]

ibetatail() is also known as the complement to the incomplete beta function (ratio).

Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain x: –8e+307 to 8e+307; interesting domain is 0 ≤ x ≤ 1
Range: 0 to 1

invibeta(a,b,p)
Description: the inverse cumulative beta distribution: if \(\text{ibeta}(a,b,x) = p\), then \(\text{invibeta}(a,b,p) = x\)

Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 1
invibetatail(a, b, p)
Description: the inverse reverse cumulative (upper tail or survivor) beta distribution: if $\text{ibetatail}(a, b, x) = p$, then $\text{invibetatail}(a, b, p) = x$
Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 1

nbetaden(a, b, np, x)
Description: the probability density function of the noncentral beta distribution; 0 if $x < 0$ or $x > 1$

The probability density function of the noncentral beta distribution is defined as

$$\sum_{j=0}^{\infty} \frac{e^{-np/2}(np/2)^j}{\Gamma(j+1)} \left\{ \frac{\Gamma(a + b + j)}{\Gamma(a + j)\Gamma(b)} x^{a+j-1}(1 - x)^{b-1} \right\}$$

where a and b are shape parameters, np is the noncentrality parameter, and x is the value of a beta random variable.

nbetaden($a, b, 0, x$) = betaden(a, b, x), but betaden() is the preferred function to use for the central beta distribution. nbetaden() is computed using an algorithm described in Johnson, Kotz, and Balakrishnan (1995).

Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain np: 0 to 1,000
Domain x: $-8e+307$ to $8e+307$; interesting domain is $0 \leq x \leq 1$
Range: 0 to $8e+307$

nibeta(a, b, np, x)
Description: the cumulative noncentral beta distribution; 0 if $x < 0$; or 1 if $x > 1$

The cumulative noncentral beta distribution is defined as

$$I_x(a, b, np) = \sum_{j=0}^{\infty} \frac{e^{-np/2}(np/2)^j}{\Gamma(j+1)} I_x(a + j, b)$$

where a and b are shape parameters, np is the noncentrality parameter, x is the value of a beta random variable, and $I_x(a, b)$ is the cumulative beta distribution, ibeta().

nibeta($a, b, 0, x$) = ibeta(a, b, x), but ibeta() is the preferred function to use for the central beta distribution. nibeta() is computed using an algorithm described in Johnson, Kotz, and Balakrishnan (1995).

Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain np: 0 to 10,000
Domain x: $-8e+307$ to $8e+307$; interesting domain is $0 \leq x \leq 1$
Range: 0 to 1
invnibeta\((a, b, np, p)\)

- Description: the inverse cumulative noncentral beta distribution: if \(\text{nibeta}(a, b, np, x) = p \), then \(\text{invibeta}(a, b, np, p) = x \)
- Domain \(a \): 1e–323 to 8e+307
- Domain \(b \): 1e–323 to 8e+307
- Domain \(np \): 0 to 1,000
- Domain \(p \): 0 to 1
- Range: 0 to 1

Binomial distribution

binomialp\((n, k, p)\)

- Description: the probability of observing \(\text{floor}(k) \) successes in \(\text{floor}(n) \) trials when the probability of a success on one trial is \(p \)
- Domain \(n \): 1 to 1e+6
- Domain \(k \): 0 to \(n \)
- Domain \(p \): 0 to 1
- Range: 0 to 1

binomial\((n, k, \theta)\)

- Description: the probability of observing \(\text{floor}(k) \) or fewer successes in \(\text{floor}(n) \) trials when the probability of a success on one trial is \(\theta \); 0 if \(k < 0 \); or 1 if \(k > n \)
- Domain \(n \): 0 to 1e+17
- Domain \(k \): \(-8e+307\) to 8e+307; interesting domain is \(0 \leq k < n \)
- Domain \(\theta \): 0 to 1
- Range: 0 to 1

binomialtail\((n, k, \theta)\)

- Description: the probability of observing \(\text{floor}(k) \) or more successes in \(\text{floor}(n) \) trials when the probability of a success on one trial is \(\theta \); 1 if \(k < 0 \); or 0 if \(k > n \)
- Domain \(n \): 0 to 1e+17
- Domain \(k \): \(-8e+307\) to 8e+307; interesting domain is \(0 \leq k < n \)
- Domain \(\theta \): 0 to 1
- Range: 0 to 1

invbinomial\((n, k, p)\)

- Description: the inverse of the cumulative binomial; that is, \(\theta \) (\(\theta = \) probability of success on one trial) such that the probability of observing \(\text{floor}(k) \) or fewer successes in \(\text{floor}(n) \) trials is \(p \)
- Domain \(n \): 1 to 1e+17
- Domain \(k \): 0 to \(n-1 \)
- Domain \(p \): 0 to 1 (exclusive)
- Range: 0 to 1
invbinomialtail\((n,k,p) \)
Description: the inverse of the right cumulative binomial; that is, \(\theta \) (\(\theta \) = probability of success on one trial) such that the probability of observing \(\text{floor}(k) \) or more successes in \(\text{floor}(n) \) trials is \(p \)
Domain \(n \): 1 to \(1e+17 \)
Domain \(k \): 1 to \(n \)
Domain \(p \): 0 to 1 (exclusive)
Range: 0 to 1

Cauchy distribution
cauchyden\((a,b,x) \)
Description: the probability density of the Cauchy distribution with location parameter \(a \) and scale parameter \(b \)
Domain \(a \): \(-1e+300 \) to \(1e+300 \)
Domain \(b \): \(1e-100 \) to \(1e+300 \)
Domain \(x \): \(-8e+307 \) to \(8e+307 \)
Range: 0 to \(8e+307 \)

cauchy\((a,b,x) \)
Description: the cumulative Cauchy distribution with location parameter \(a \) and scale parameter \(b \)
Domain \(a \): \(-1e+300 \) to \(1e+300 \)
Domain \(b \): \(1e-100 \) to \(1e+300 \)
Domain \(x \): \(-8e+307 \) to \(8e+307 \)
Range: 0 to 1

cauchytail\((a,b,x) \)
Description: the reverse cumulative (upper tail or survivor) Cauchy distribution with location parameter \(a \) and scale parameter \(b \)
\[\text{cauchytail}(a,b,x) = 1 - \text{cauchy}(a,b,x) \]
Domain \(a \): \(-1e+300 \) to \(1e+300 \)
Domain \(b \): \(1e-100 \) to \(1e+300 \)
Domain \(x \): \(-8e+307 \) to \(8e+307 \)
Range: 0 to 1

invcauchy\((a,b,p) \)
Description: the inverse of \text{cauchy}(): if \text{cauchy}(a,b,x) = p, then \[\text{invcauchy}(a,b,p) = x \]
Domain \(a \): \(-1e+300 \) to \(1e+300 \)
Domain \(b \): \(1e-100 \) to \(1e+300 \)
Domain \(p \): 0 to 1 (exclusive)
Range: \(-8e+307 \) to \(8e+307 \)
invcauchytail\((a, b, p)\)
Description: the inverse of cauchytail(): if cauchytail\((a, b, x) = p\), then
\[\text{invcauchytail}(a, b, p) = x \]
Domain \(a\): \(-1 \times 10^{300}\) to \(1 \times 10^{300}\)
Domain \(b\): \(1 \times 10^{-100}\) to \(1 \times 10^{300}\)
Domain \(p\): 0 to 1 (exclusive)
Range: \(-8 \times 10^{307}\) to \(8 \times 10^{307}\)

lncauchyden\((a, b, x)\)
Description: the natural logarithm of the density of the Cauchy distribution with location parameter \(a\) and scale parameter \(b\)
Domain \(a\): \(-1 \times 10^{300}\) to \(1 \times 10^{300}\)
Domain \(b\): \(1 \times 10^{-100}\) to \(1 \times 10^{300}\)
Domain \(x\): \(-8 \times 10^{307}\) to \(8 \times 10^{307}\)
Range: \(-1650\) to \(230\)

Chi-squared and noncentral chi-squared distributions

chi2den\((df, x)\)
Description: the probability density of the chi-squared distribution with \(df\) degrees of freedom; 0 if \(x < 0\)
\[\text{chi2den}(df, x) = \text{gammaden}(df/2, 2, 0, x) \]
Domain \(df\): \(2 \times 10^{-10}\) to \(2 \times 10^{17}\) (may be nonintegral)
Domain \(x\): \(-8 \times 10^{307}\) to \(8 \times 10^{307}\)
Range: 0 to \(8 \times 10^{307}\)

chi2\((df, x)\)
Description: the cumulative \(\chi^2\) distribution with \(df\) degrees of freedom; 0 if \(x < 0\)
\[\text{chi2}(df, x) = \text{gammap}(df/2, x/2) \]
Domain \(df\): \(2 \times 10^{-10}\) to \(2 \times 10^{17}\) (may be nonintegral)
Domain \(x\): \(-8 \times 10^{307}\) to \(8 \times 10^{307}\); interesting domain is \(x \geq 0\)
Range: 0 to 1

chi2tail\((df, x)\)
Description: the reverse cumulative (upper tail or survivor) \(\chi^2\) distribution with \(df\) degrees of freedom; 1 if \(x < 0\)
\[\text{chi2tail}(df, x) = 1 - \text{chi2}(df, x) \]
Domain \(df\): \(2 \times 10^{-10}\) to \(2 \times 10^{17}\) (may be nonintegral)
Domain \(x\): \(-8 \times 10^{307}\) to \(8 \times 10^{307}\); interesting domain is \(x \geq 0\)
Range: 0 to 1

invchi2\((df, p)\)
Description: the inverse of chi2(): if \(\text{chi2}(df, x) = p\), then \(\text{invchi2}(df, p) = x\)
Domain \(df\): \(2 \times 10^{-10}\) to \(2 \times 10^{17}\) (may be nonintegral)
Domain \(p\): 0 to 1
Range: 0 to \(8 \times 10^{307}\)
invchi2tail(df,p)
Description: the inverse of chi2tail(): if chi2tail(df,x) = p, then invchi2tail(df,p) = x
Domain df: 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: 0 to 8e+307

nchi2den(df,np,x)
Description: the probability density of the noncentral χ² distribution; 0 if x < 0
 df denotes the degrees of freedom, np is the noncentrality parameter, and x is the value of χ².
 nchi2den(df,0,x) = chi2den(df,x), but chi2den() is the preferred function to use for the central χ² distribution.
Domain df: 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain x: −8e+307 to 8e+307
Range: 0 to 8e+307

nchi2(df,np,x)
Description: the cumulative noncentral χ² distribution; 0 if x < 0
 The cumulative noncentral χ² distribution is defined as
 \[\int_0^x \frac{e^{-t/2} e^{-np/2}}{2^{df/2}} \sum_{j=0}^{\infty} \frac{t^{df/2+j-1} np^j}{\Gamma(df/2 + j) 2^{2j} j!} dt \]
 where df denotes the degrees of freedom, np is the noncentrality parameter, and x is the value of χ².
 nchi2(df,0,x) = chi2(df,x), but chi2() is the preferred function to use for the central χ² distribution.
Domain df: 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain x: −8e+307 to 8e+307; interesting domain is x ≥ 0
Range: 0 to 1

nchi2tail(df,np,x)
Description: the reverse cumulative (upper tail or survivor) noncentral χ² distribution; 1 if x < 0
 df denotes the degrees of freedom, np is the noncentrality parameter, and x is the value of χ².
Domain df: 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain x: −8e+307 to 8e+307
Range: 0 to 1
invnchi2(df, np, p)
Description: the inverse cumulative noncentral χ^2 distribution: if $\text{nchi2}(df, np, x) = p$, then $\text{invnchi2}(df, np, p) = x$
Domain df: 2×10^{-10} to 1×10^6 (may be nonintegral)
Domain np: 0 to 10,000
Domain p: 0 to 1
Range: 0 to 8×10^3

invnchi2tail(df, np, p)
Description: the inverse reverse cumulative (upper tail or survivor) noncentral χ^2 distribution: if $\text{nchi2tail}(df, np, x) = p$, then $\text{invnchi2tail}(df, np, p) = x$
Domain df: 2×10^{-10} to 1×10^6 (may be nonintegral)
Domain np: 0 to 10,000
Domain p: 0 to 1
Range: 0 to 8×10^3

nnpchi2(df, x, p)
Description: the noncentrality parameter, np, for noncentral χ^2: if $\text{nchi2}(df, np, x) = p$, then $\text{nnpchi2}(df, x, p) = np$
Domain df: 2×10^{-10} to 1×10^6 (may be nonintegral)
Domain x: 0 to 8×10^3
Domain p: 0 to 1
Range: 0 to 10,000

Dunnett’s multiple range distribution

dunnettprob(k, df, x)
Description: the cumulative multiple range distribution that is used in Dunnett’s multiple-comparison method with k ranges and df degrees of freedom; 0 if $x < 0$

$\text{dunnettprob}(k, df, x)$ is computed using an algorithm described in Miller (1981).
Domain k: 2 to 1×10^6
Domain df: 2 to 1×10^6
Domain x: -8×10^3 to 8×10^3; interesting domain is $x \geq 0$
Range: 0 to 1

invdunnettprob(k, df, p)
Description: the inverse cumulative multiple range distribution that is used in Dunnett’s multiple-comparison method with k ranges and df degrees of freedom

If $\text{dunnettprob}(k, df, x) = p$, then $\text{invdunnettprob}(k, df, p) = x$.

$\text{invdunnettprob}(k, df, p)$ is computed using an algorithm described in Miller (1981).
Domain k: 2 to 1×10^6
Domain df: 2 to 1×10^6
Domain p: 0 to 1 (right exclusive)
Range: 0 to 8×10^3
Charles William Dunnett (1921–2007) was a Canadian statistician best known for his work on multiple-comparison procedures. He was born in Windsor, Ontario, and graduated in mathematics and physics from McMaster University. After naval service in World War II, Dunnett’s career included further graduate work, teaching, and research at Toronto, Columbia, the New York State Maritime College, the Department of National Health and Welfare in Ottawa, Cornell, Lederle Laboratories, and Aberdeen before he became Professor of Clinical Epidemiology and Biostatistics at McMaster University in 1974. He was President and Gold Medalist of the Statistical Society of Canada. Throughout his career, Dunnett took a keen interest in computing. According to Google Scholar, his 1955 paper on comparing treatments with a control has been cited over 4,000 times.

Exponential distribution

exponential*den*(b,x)

Description: the probability density function of the exponential distribution with scale \(b \)

The probability density function of the exponential distribution is

\[
\frac{1}{b} \exp\left(-\frac{x}{b}\right)
\]

where \(b \) is the scale and \(x \) is the value of an exponential variate.

Domain \(b \): 1e–323 to 8e+307
Domain \(x \): –8e+307 to 8e+307; interesting domain is \(x \geq 0 \)
Range: 1e–323 to 8e+307

exponential(b,x)

Description: the cumulative exponential distribution with scale \(b \)

The cumulative distribution function of the exponential distribution is

\[
1 - \exp\left(-\frac{x}{b}\right)
\]

for \(x \geq 0 \) and 0 for \(x < 0 \), where \(b \) is the scale and \(x \) is the value of an exponential variate.

The mean of the exponential distribution is \(b \) and its variance is \(b^2 \).

Domain \(b \): 1e–323 to 8e+307
Domain \(x \): –8e+307 to 8e+307; interesting domain is \(x \geq 0 \)
Range: 0 to 1

exponential*altail*(b,x)

Description: the reverse cumulative exponential distribution with scale \(b \)

The reverse cumulative distribution function of the exponential distribution is

\[
\exp\left(-\frac{x}{b}\right)
\]

where \(b \) is the scale and \(x \) is the value of an exponential variate.

Domain \(b \): 1e–323 to 8e+307
Domain \(x \): –8e+307 to 8e+307; interesting domain is \(x \geq 0 \)
Range: 0 to 1
invexponential\((b,p)\)

Description: the inverse cumulative exponential distribution with scale \(b\): if \(\text{exponential}(b,x) = p\), then \(\text{invexponential}(b,p) = x\)

- **Domain** \(b\): 1e–323 to 8e+307
- **Domain** \(p\): 0 to 1
- **Range:** 1e–323 to 8e+307

invexponentialtail\((b,p)\)

Description: the inverse reverse cumulative exponential distribution with scale \(b\): if \(\text{exponentialtail}(b,x) = p\), then \(\text{invexponentialtail}(b,p) = x\)

- **Domain** \(b\): 1e–323 to 8e+307
- **Domain** \(p\): 0 to 1
- **Range:** 1e–323 to 8e+307

F and noncentral F distributions

\(\text{Fden}(df_1,df_2,f)\)

Description: the probability density function of the \(F\) distribution with \(df_1\) numerator and \(df_2\) denominator degrees of freedom; 0 if \(f < 0\)

The probability density function of the \(F\) distribution with \(df_1\) numerator and \(df_2\) denominator degrees of freedom is defined as

\[
\text{Fden}(df_1,df_2,f) = \frac{\Gamma\left(\frac{df_1+df_2}{2}\right)}{\Gamma\left(\frac{df_1}{2}\right)\Gamma\left(\frac{df_2}{2}\right)} \left(\frac{df_1}{df_2}\right)^{\frac{df_1}{2}} \cdot f^{\frac{df_1}{2}-1} \left(1 + \frac{df_1}{df_2}f\right)^{-\frac{1}{2}(df_1+df_2)}
\]

- **Domain** \(df_1\): 1e–323 to 8e+307 (may be nonintegral)
- **Domain** \(df_2\): 1e–323 to 8e+307 (may be nonintegral)
- **Domain** \(f\): \(-8e+307\) to 8e+307; interesting domain is \(f \geq 0\)
- **Range:** 0 to 8e+307

\(\text{F}(df_1,df_2,f)\)

Description: the cumulative \(F\) distribution with \(df_1\) numerator and \(df_2\) denominator degrees of freedom: \(\text{F}(df_1,df_2,f) = \int_0^f \text{Fden}(df_1,df_2,t) \, dt\); 0 if \(f < 0\)

- **Domain** \(df_1\): 2e–10 to 2e+17 (may be nonintegral)
- **Domain** \(df_2\): 2e–10 to 2e+17 (may be nonintegral)
- **Domain** \(f\): \(-8e+307\) to 8e+307; interesting domain is \(f \geq 0\)
- **Range:** 0 to 1

\(\text{Ftail}(df_1,df_2,f)\)

Description: the reverse cumulative (upper tail or survivor) \(F\) distribution with \(df_1\) numerator and \(df_2\) denominator degrees of freedom; 1 if \(f < 0\)

- **Domain** \(df_1\): 2e–10 to 2e+17 (may be nonintegral)
- **Domain** \(df_2\): 2e–10 to 2e+17 (may be nonintegral)
- **Domain** \(f\): \(-8e+307\) to 8e+307; interesting domain is \(f \geq 0\)
- **Range:** 0 to 1
Statistical functions 101

invF(df1, df2, p)
Description: the inverse cumulative F distribution: if $F(df1, df2, f) = p$, then
$invF(df1, df2, p) = f$
Domain $df1$: 2e–10 to 2e+17 (may be nonintegral)
Domain $df2$: 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: 0 to 8e+307

invFtail(df1, df2, p)
Description: the inverse reverse cumulative (upper tail or survivor) F distribution: if $F\text{tail}(df1, df2, f) = p$, then $invF\text{tail}(df1, df2, p) = f$
Domain $df1$: 2e–10 to 2e+17 (may be nonintegral)
Domain $df2$: 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: 0 to 8e+307

nFden(df1, df2, np, f)
Description: the probability density function of the noncentral F distribution with $df1$ numerator and $df2$ denominator degrees of freedom and noncentrality parameter np; 0 if $f < 0$
$nFden(df1, df2, 0, f) = Fden(df1, df2, f)$, but $Fden()$ is the preferred function to use for the central F distribution.
Also, if F follows the noncentral F distribution with $df1$ and $df2$ degrees of freedom and noncentrality parameter np, then

$$\frac{df1 F}{df2 + df1 F}$$

follows a noncentral beta distribution with shape parameters $a = df1/2$, $b = df2/2$, and noncentrality parameter np, as given in $nbetaden()$. $nFden()$ is computed based on this relationship.
Domain $df1$: 1e–323 to 8e+307 (may be nonintegral)
Domain $df2$: 1e–323 to 8e+307 (may be nonintegral)
Domain np: 0 to 1,000
Domain f: –8e+307 to 8e+307; interesting domain is $f \geq 0$
Range: 0 to 8e+307

nF(df1, df2, np, f)
Description: the cumulative noncentral F distribution with $df1$ numerator and $df2$ denominator degrees of freedom and noncentrality parameter np; 0 if $f < 0$

$nF(df1, df2, 0, f) = F(df1, df2, f)$

$nF()$ is computed using $nibeta()$ based on the relationship between the noncentral beta and noncentral F distributions: $nF(df1, df2, np, f) = \frac{nibeta(df1/2, df2/2, np, df1 \times f / ((df1 \times f) + df2))}{df1 \times f / ((df1 \times f) + df2)}$.
Domain $df1$: 2e–10 to 1e+8
Domain $df2$: 2e–10 to 1e+8
Domain np: 0 to 10,000
Domain f: –8e+307 to 8e+307
Range: 0 to 1
nFtail(df_1, df_2, np, f)
Description: the reverse cumulative (upper tail or survivor) noncentral F distribution with df_1 numerator and df_2 denominator degrees of freedom and noncentrality parameter np; 1 if f < 0
nFtail() is computed using nibeta() based on the relationship between the noncentral beta and F distributions. See Johnson, Kotz, and Balakrishnan (1995) for more details.
Domain df_1: 1e–323 to 8e+307 (may be nonintegral)
Domain df_2: 1e–323 to 8e+307 (may be nonintegral)
Domain np: 0 to 1,000
Domain f: −8e+307 to 8e+307; interesting domain is f ≥ 0
Range: 0 to 1

invnF(df_1, df_2, np, p)
Description: the inverse cumulative noncentral F distribution: if nF(df_1, df_2, np, f) = p, then invnF(df_1, df_2, np, p) = f
Domain df_1: 1e–6 to 1e+6 (may be nonintegral)
Domain df_2: 1e–6 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain p: 0 to 1
Range: 0 to 8e+307

invnFtail(df_1, df_2, np, p)
Description: the inverse reverse cumulative (upper tail or survivor) noncentral F distribution: if nFtail(df_1, df_2, np, x) = p, then invnFtail(df_1, df_2, np, p) = x
Domain df_1: 1e–323 to 8e+307 (may be nonintegral)
Domain df_2: 1e–323 to 8e+307 (may be nonintegral)
Domain np: 0 to 1,000
Domain p: 0 to 1
Range: 0 to 8e+307

npnF(df_1, df_2, f, p)
Description: the noncentrality parameter, np, for the noncentral F: if nF(df_1, df_2, np, f) = p, then npnF(df_1, df_2, f, p) = np
Domain df_1: 2e–10 to 1e+6 (may be nonintegral)
Domain df_2: 2e–10 to 1e+6 (may be nonintegral)
Domain f: 0 to 8e+307
Domain p: 0 to 1
Range: 0 to 1,000
Gamma distribution

gammaden\((a, b, g, x)\)
Description: the probability density function of the gamma distribution; 0 if \(x < g\)

The probability density function of the gamma distribution is defined by

\[
\frac{1}{\Gamma(a)b^a} (x - g)^{a-1}e^{-(x-g)/b}
\]

where \(a\) is the shape parameter, \(b\) is the scale parameter, and \(g\) is the location parameter.

Domain \(a\): 1e–323 to 8e+307
Domain \(b\): 1e–323 to 8e+307
Domain \(g\): –8e+307 to 8e+307
Domain \(x\): –8e+307 to 8e+307; interesting domain is \(x \geq g\)
Range: 0 to 8e+307

gammap\((a, x)\)
Description: the cumulative gamma distribution with shape parameter \(a\); 0 if \(x < 0\)

The cumulative gamma distribution with shape parameter \(a\) is defined by

\[
\frac{1}{\Gamma(a)} \int_0^x e^{-t} t^{a-1} dt
\]

The cumulative Poisson (the probability of observing \(k\) or fewer events if the expected is \(x\)) can be evaluated as \(1 - \text{gammap}(k+1, x)\). The reverse cumulative (the probability of observing \(k\) or more events) can be evaluated as \(\text{gammap}(k, x)\). See Press et al. (2007, 259–266) for a more complete description and for suggested uses for this function.

gammap() is also known as the incomplete gamma function (ratio).

Probabilities for the three-parameter gamma distribution (see gammaden()) can be calculated by shifting and scaling \(x\); that is, \(\text{gammap}(a, (x - g)/b)\).

Domain \(a\): 1e–10 to 1e+17
Domain \(x\): –8e+307 to 8e+307; interesting domain is \(x \geq 0\)
Range: 0 to 1
gammap_tail(a, x)
Description: the reverse cumulative (upper tail or survivor) gamma distribution with shape parameter a; 1 if x < 0
The reverse cumulative (upper tail or survivor) gamma distribution with shape parameter a is defined by
\[\text{gammap}(a, x) = 1 - \text{gammap}(a, x) = \int_x^\infty \text{gammaden}(a, t) \, dt \]
\text{gammap}(a, x) \text{ is also known as the complement to the incomplete gamma function (ratio).}

Domain a: 1e–10 to 1e+17
Domain x: −8e+307 to 8e+307; interesting domain is x ≥ 0
Range: 0 to 1

invgamma(a, p)
Description: the inverse cumulative gamma distribution: if \(\text{gammap}(a, x) = p \), then \(\text{invgamma}(a, p) = x \)

Domain a: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 8e+307

invgammap_tail(a, p)
Description: the inverse reverse cumulative (upper tail or survivor) gamma distribution: if \(\text{gammap}(a, x) = p \), then \(\text{invgammap}(a, p) = x \)

Domain a: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 8e+307

dgamma_d_pda(a, x)
Description: \[\frac{\partial P(a, x)}{\partial a} \], where \(P(a, x) = \text{gammap}(a, x) \); 0 if x < 0

Domain a: 1e–7 to 1e+17
Domain x: −8e+307 to 8e+307; interesting domain is x ≥ 0
Range: −16 to 0

dgamma_d_pada(a, x)
Description: \[\frac{\partial^2 P(a, x)}{\partial a^2} \], where \(P(a, x) = \text{gammap}(a, x) \); 0 if x < 0

Domain a: 1e–7 to 1e+17
Domain x: −8e+307 to 8e+307; interesting domain is x ≥ 0
Range: −0.02 to 4.77e+5

dgamma_d_padx(a, x)
Description: \[\frac{\partial^2 P(a, x)}{\partial a \partial x} \], where \(P(a, x) = \text{gammap}(a, x) \); 0 if x < 0

Domain a: 1e–7 to 1e+17
Domain x: −8e+307 to 8e+307; interesting domain is x ≥ 0
Range: −0.04 to 8e+307
\textbf{Hypergeometric distribution}

\texttt{hypergeometricp}(N,K,n,k)

\textbf{Description:} the hypergeometric probability of \(k \) successes out of a sample of size \(n \), from a population of size \(N \) containing \(K \) elements that have the attribute of interest.

Success is obtaining an element with the attribute of interest.

\textbf{Domain:}\n\begin{align*}
\text{Domain } N & : \text{2 to 1e+5} \\
\text{Domain } K & : \text{1 to } N-1 \\
\text{Domain } n & : \text{1 to } N-1 \\
\text{Domain } k & : \max(0,n-N+K) \text{ to } \min(K,n) \\
\text{Range:} & \text{0 to 1 (right exclusive)}
\end{align*}

\texttt{hypergeometric}(N,K,n,k)

\textbf{Description:} the cumulative probability of the hypergeometric distribution

\(N \) is the population size, \(K \) is the number of elements in the population that have the attribute of interest, and \(n \) is the sample size. Returned is the probability of observing \(k \) or fewer elements from a sample of size \(n \) that have the attribute of interest.

\textbf{Domain:}\n\begin{align*}
\text{Domain } N & : \text{2 to 1e+5} \\
\text{Domain } K & : \text{1 to } N-1 \\
\text{Domain } n & : \text{1 to } N-1 \\
\text{Domain } k & : \max(0,n-N+K) \text{ to } \min(K,n) \\
\text{Range:} & \text{0 to 1}
\end{align*}
Inverse Gaussian distribution

\textbf{igaussianden}(m,a,x)

Description: the probability density of the inverse Gaussian distribution with mean \(m\) and shape parameter \(a\); 0 if \(x \leq 0\)

Domain \(m\): 1e–323 to 8e+307
Domain \(a\): 1e–323 to 8e+307
Domain \(x\): –8e+307 to 8e+307
Range: 0 to 8e+307

\textbf{igaussian}(m,a,x)

Description: the cumulative inverse Gaussian distribution with mean \(m\) and shape parameter \(a\); 0 if \(x \leq 0\)

Domain \(m\): 1e–323 to 8e+307
Domain \(a\): 1e–323 to 8e+307
Domain \(x\): –8e+307 to 8e+307
Range: 0 to 1

\textbf{igaussiantail}(m,a,x)

Description: the reverse cumulative (upper tail or survivor) inverse Gaussian distribution with mean \(m\) and shape parameter \(a\); 1 if \(x \leq 0\)

\[\text{igaussiantail}(m,a,x) = 1 - \text{igaussian}(m,a,x)\]

Domain \(m\): 1e–323 to 8e+307
Domain \(a\): 1e–323 to 8e+307
Domain \(x\): –8e+307 to 8e+307
Range: 0 to 1

\textbf{invigaussian}(m,a,p)

Description: the inverse of \texttt{igaussian()}: if
\[\text{igaussian}(m,a,x) = p, \text{ then } \text{invigaussian}(m,a,p) = x\]

Domain \(m\): 1e–323 to 8e+307
Domain \(a\): 1e–323 to 1e+8
Domain \(p\): 0 to 1 (exclusive)
Range: 0 to 8e+307

\textbf{invgaussiantail}(m,a,p)

Description: the inverse of \texttt{igaussiantail()}: if
\[\text{igaussiantail}(m,a,x) = p, \text{ then } \text{invgaussiantail}(m,a,p) = x\]

Domain \(m\): 1e–323 to 8e+307
Domain \(a\): 1e–323 to 1e+8
Domain \(p\): 0 to 1 (exclusive)
Range: 0 to 1

\textbf{lnigaussianden}(m,a,x)

Description: the natural logarithm of the inverse Gaussian density with mean \(m\) and shape parameter \(a\)

Domain \(m\): 1e–323 to 8e+307
Domain \(a\): 1e–323 to 8e+307
Domain \(x\): 1e–323 to 8e+307
Range: –8e+307 to 8e+307
Laplace distribution

laplaceden\((m, b, x) \)
Description: the probability density of the Laplace distribution with mean \(m \) and scale parameter \(b \)
Domain \(m \): \(-8e+307 \) to \(8e+307 \)
Domain \(b \): \(1e–307 \) to \(8e+307 \)
Domain \(x \): \(-8e+307 \) to \(8e+307 \)
Range: \(0 \) to \(8e+307 \)

laplace\((m, b, x) \)
Description: the cumulative Laplace distribution with mean \(m \) and scale parameter \(b \)
Domain \(m \): \(-8e+307 \) to \(8e+307 \)
Domain \(b \): \(1e–307 \) to \(8e+307 \)
Domain \(x \): \(-8e+307 \) to \(8e+307 \)
Range: \(0 \) to \(1 \)

laplacetail\((m, b, x) \)
Description: the reverse cumulative (upper tail or survivor) Laplace distribution with mean \(m \) and scale parameter \(b \)
Domain \(m \): \(-8e+307 \) to \(8e+307 \)
Domain \(b \): \(1e–307 \) to \(8e+307 \)
Domain \(x \): \(-8e+307 \) to \(8e+307 \)
Range: \(0 \) to \(1 \)

invlaplace\((m, b, p) \)
Description: the inverse of \(\text{laplace}(m, b, x) = p \), then \(\text{invlaplace}(m, b, p) = x \)
Domain \(m \): \(-8e+307 \) to \(8e+307 \)
Domain \(b \): \(1e–307 \) to \(8e+307 \)
Domain \(p \): \(0 \) to \(1 \) (exclusive)
Range: \(-8e+307 \) to \(8e+307 \)

invlaplacetail\((m, b, p) \)
Description: the inverse of \(\text{laplacetail}(m, b, x) = p \), then \(\text{invlaplacetail}(m, b, p) = x \)
Domain \(m \): \(-8e+307 \) to \(8e+307 \)
Domain \(b \): \(1e–307 \) to \(8e+307 \)
Domain \(p \): \(0 \) to \(1 \) (exclusive)
Range: \(-8e+307 \) to \(8e+307 \)

lnlaplaceden\((m, b, x) \)
Description: the natural logarithm of the density of the Laplace distribution with mean \(m \) and scale parameter \(b \)
Domain \(m \): \(-8e+307 \) to \(8e+307 \)
Domain \(b \): \(1e–307 \) to \(8e+307 \)
Domain \(x \): \(-8e+307 \) to \(8e+307 \)
Range: \(-8e+307 \) to \(707 \)
Logistic distribution

logisticden(x)
Description: the density of the logistic distribution with mean 0 and standard deviation $\pi/\sqrt{3}$

$logisticden(x) = logisticden(1,x) = logisticden(0,1,x)$, where x is the value of a logistic random variable.

Domain x: $-8e+307$ to $8e+307$
Range: 0 to 0.25

logisticden(s,x)
Description: the density of the logistic distribution with mean 0, scale s, and standard deviation $s\pi/\sqrt{3}$

$logisticden(s,x) = logisticden(0,s,x)$, where s is the scale and x is the value of a logistic random variable.

Domain s: $1e-323$ to $8e+307$
Domain x: $-8e+307$ to $8e+307$
Range: 0 to $8e+307$

logisticden(m,s,x)
Description: the density of the logistic distribution with mean m, scale s, and standard deviation $s\pi/\sqrt{3}$

The density of the logistic distribution is defined as

$$
\frac{\exp\left\{-\left(x - m\right)/s\right\}}{s\left[1 + \exp\left\{-\left(x - m\right)/s\right\}\right]^2}
$$

where m is the mean, s is the scale, and x is the value of a logistic random variable.

Domain m: $-8e+307$ to $8e+307$
Domain s: $1e-323$ to $8e+307$
Domain x: $-8e+307$ to $8e+307$
Range: 0 to $8e+307$

logistic(x)
Description: the cumulative logistic distribution with mean 0 and standard deviation $\pi/\sqrt{3}$

$logistic(x) = logistic(1,x) = logistic(0,1,x)$, where x is the value of a logistic random variable.

Domain x: $-8e+307$ to $8e+307$
Range: 0 to 1
logistic\((s, x) \)
Description: the cumulative logistic distribution with mean 0, scale \(s \), and standard deviation \(s\pi/\sqrt{3} \)

\[
\text{logistic}(s, x) = \text{logistic}(0, s, x), \text{ where } s \text{ is the scale and } x \text{ is the value of a logistic random variable.}
\]
Domain \(s \): 1e–323 to 8e+307
Domain \(x \): −8e+307 to 8e+307
Range: 0 to 1

logistic\((m, s, x) \)
Description: the cumulative logistic distribution with mean \(m \), scale \(s \), and standard deviation \(s\pi/\sqrt{3} \)

The cumulative logistic distribution is defined as

\[
[1 + \exp\{- (x - m)/s\}]^{-1}
\]

where \(m \) is the mean, \(s \) is the scale, and \(x \) is the value of a logistic random variable.

Domain \(m \): −8e+307 to 8e+307
Domain \(s \): 1e–323 to 8e+307
Domain \(x \): −8e+307 to 8e+307
Range: 0 to 1

logistictail\((x) \)
Description: the reverse cumulative logistic distribution with mean 0 and standard deviation \(\pi/\sqrt{3} \)

\[
\text{logistictail}(x) = \text{logistictail}(1,x) = \text{logistictail}(0,1,x), \text{ where } x \text{ is the value of a logistic random variable.}
\]
Domain \(x \): −8e+307 to 8e+307
Range: 0 to 1

logistictail\((s, x) \)
Description: the reverse cumulative logistic distribution with mean 0, scale \(s \), and standard deviation \(s\pi/\sqrt{3} \)

\[
\text{logistictail}(s,x) = \text{logistictail}(0,s,x), \text{ where } s \text{ is the scale and } x \text{ is the value of a logistic random variable.}
\]
Domain \(s \): 1e–323 to 8e+307
Domain \(x \): −8e+307 to 8e+307
Range: 0 to 1
logistictail\((m, s, x)\)
Description: the reverse cumulative logistic distribution with mean \(m\), scale \(s\), and standard deviation \(s\pi/\sqrt{3}\)

The reverse cumulative logistic distribution is defined as

\[
[1 + \exp\left\{\left(\frac{x - m}{s}\right)\right\}]^{-1}
\]

where \(m\) is the mean, \(s\) is the scale, and \(x\) is the value of a logistic random variable.

Domain \(m\): \(-8e+307\) to \(8e+307\)
Domain \(s\): \(1e–323\) to \(8e+307\)
Domain \(x\): \(-8e+307\) to \(8e+307\)
Range: 0 to 1

invlogistic\((p)\)
Description: the inverse cumulative logistic distribution: if \(\text{logistic}(x) = p\), then \(\text{invlogistic}(p) = x\)

Domain \(p\): 0 to 1
Range: \(-8e+307\) to \(8e+307\)

invlogistic\((s, p)\)
Description: the inverse cumulative logistic distribution: if \(\text{logistic}(s, x) = p\), then \(\text{invlogistic}(s, p) = x\)

Domain \(s\): \(1e–323\) to \(8e+307\)
Domain \(p\): 0 to 1
Range: \(-8e+307\) to \(8e+307\)

invlogistic\((m, s, p)\)
Description: the inverse cumulative logistic distribution: if \(\text{logistic}(m, s, x) = p\), then \(\text{invlogistic}(m, s, p) = x\)

Domain \(m\): \(-8e+307\) to \(8e+307\)
Domain \(s\): \(1e–323\) to \(8e+307\)
Domain \(p\): 0 to 1
Range: \(-8e+307\) to \(8e+307\)

invlogistictail\((p)\)
Description: the inverse reverse cumulative logistic distribution: if \(\text{logistictail}(x) = p\), then \(\text{invlogistictail}(p) = x\)

Domain \(p\): 0 to 1
Range: \(-8e+307\) to \(8e+307\)

invlogistictail\((s, p)\)
Description: the inverse reverse cumulative logistic distribution: if \(\text{logistictail}(s, x) = p\), then \(\text{invlogistictail}(s, p) = x\)

Domain \(s\): \(1e–323\) to \(8e+307\)
Domain \(p\): 0 to 1
Range: \(-8e+307\) to \(8e+307\)
invlogistictail(m,s,p)
Description: the inverse reverse cumulative logistic distribution: if
logistictail(m,s,x) = p, then
invlogistictail(m,s,p) = x

Domain m: \(-8e+307 \) to \(8e+307\)
Domain s: \(1e–323 \) to \(8e+307\)
Domain p: 0 to 1
Range: \(-8e+307 \) to \(8e+307\)

Negative binomial distribution

nbinomialp(n,k,p)
Description: the negative binomial probability

When \(n\) is an integer, \(nbinomialp()\) returns the probability of observing exactly \(\text{floor}(k)\) failures before the \(n\)th success when the probability of a success on one trial is \(p\).

Domain n: \(1e–10 \) to \(1e+6\) (can be nonintegral)
Domain k: 0 to \(1e+10\)
Domain p: 0 to 1 (left exclusive)
Range: 0 to 1

nbinomial(n,k,p)
Description: the cumulative probability of the negative binomial distribution

\(n\) can be nonintegral. When \(n\) is an integer, \(nbinomial()\) returns the probability of observing \(k\) or fewer failures before the \(n\)th success, when the probability of a success on one trial is \(p\).

The negative binomial distribution function is evaluated using \(ibeta()\).

Domain n: \(1e–10 \) to \(1e+17\) (can be nonintegral)
Domain k: 0 to \(2^{53} – 1\)
Domain p: 0 to 1 (left exclusive)
Range: 0 to 1

nbinomialtaill(n,k,p)
Description: the reverse cumulative probability of the negative binomial distribution

When \(n\) is an integer, \(nbinomialtaill()\) returns the probability of observing \(k\) or more failures before the \(n\)th success, when the probability of a success on one trial is \(p\).

The reverse negative binomial distribution function is evaluated using \(ibetatail()\).

Domain n: \(1e–10 \) to \(1e+17\) (can be nonintegral)
Domain k: 0 to \(2^{53} – 1\)
Domain p: 0 to 1 (left exclusive)
Range: 0 to 1
invnbinomial\((n, k, q)\)
Description: the value of the negative binomial parameter, \(p\), such that \(q = \text{nbinomial}(n, k, p) \)

\[
\text{invnbinomial}() \text{ is evaluated using } \text{invibeta}().
\]
Domain \(n\): \(1e-10\) to \(1e+17\) (can be nonintegral)
Domain \(k\): \(0\) to \(2^{53} - 1\)
Domain \(q\): \(0\) to \(1\) (exclusive)
Range: \(0\) to \(1\)

invnbinomials\((n, k, q)\)
Description: the value of the negative binomial parameter, \(p\), such that \(q = \text{nbinomial}(n, k, p) \)

\[
\text{invnbinomials}() \text{ is evaluated using } \text{invibetatail}().
\]
Domain \(n\): \(1e-10\) to \(1e+17\) (can be nonintegral)
Domain \(k\): \(1\) to \(2^{53} - 1\)
Domain \(q\): \(0\) to \(1\) (exclusive)
Range: \(0\) to \(1\) (exclusive)

Normal (Gaussian), binormal, and multivariate normal distributions

normalden\((z)\)
Description: the standard normal density, \(N(0, 1)\)
Domain: \(-8e+307\) to \(8e+307\)
Range: \(0\) to \(0.39894\) ...

normalden\((x, \sigma)\)
Description: the normal density with mean 0 and standard deviation \(\sigma\)

\[
\text{normalden}(x, 1) = \text{normalden}(x) \text{ and } \text{normalden}(x, \sigma) = \text{normalden}(x/\sigma)/\sigma.
\]
Domain \(x\): \(-8e+307\) to \(8e+307\)
Domain \(\sigma\): \(1e-308\) to \(8e+307\)
Range: \(0\) to \(8e+307\)

normalden\((x, \mu, \sigma)\)
Description: the normal density with mean \(\mu\) and standard deviation \(\sigma\), \(N(\mu, \sigma^2)\)

\[
\text{normalden}(x, 0, s) = \text{normalden}(x, s) \text{ and } \text{normalden}(x, \mu, \sigma) = \text{normalden}((x - \mu)/\sigma)/\sigma. \text{ In general,} \\
\text{normalden}(z, \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left\{(z-\mu)/\sigma\right\}^2}
\]
Domain \(x\): \(-8e+307\) to \(8e+307\)
Domain \(\mu\): \(-8e+307\) to \(8e+307\)
Domain \(\sigma\): \(1e-308\) to \(8e+307\)
Range: \(0\) to \(8e+307\)
normal(z)
Description: the cumulative standard normal distribution
\[
\text{normal}(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx
\]
Domain: \(-8e+307\) to \(8e+307\)
Range: 0 to 1

invnormal(p)
Description: the inverse cumulative standard normal distribution: if normal(z) = p, then invnormal(p) = z
Domain: \(1e–323\) to \(1\)
Range: \(-38.449394\) to \(8.2095362\)

lnnormalden(z)
Description: the natural logarithm of the standard normal density, \(N(0, 1)\)
Domain: \(-1e+154\) to \(1e+154\)
Range: \(-5e+307\) to \(-0.91893853 = \ln\text{normalden}(0)\)

lnnormalden(x, σ)
Description: the natural logarithm of the normal density with mean 0 and standard deviation σ
\[
\ln\text{normalden}(x, 1) = \ln\text{normalden}(x) \quad \text{and} \quad \ln\text{normalden}(x, σ) = \ln\text{normalden}(x/σ) − \ln(σ).
\]
Domain x: \(-8e+307\) to \(8e+307\)
Domain σ: \(1e–323\) to \(8e+307\)
Range: \(-5e+307\) to \(742.82799\)

lnnormalden(x, µ, σ)
Description: the natural logarithm of the normal density with mean µ and standard deviation σ, \(N(µ, σ^2)\)
\[
\ln\text{normalden}(x, 0, σ) = \ln\text{normalden}(x, σ) \quad \text{and} \quad \ln\text{normalden}(x, µ, σ) = \ln\text{normalden}((x - µ)/σ) − \ln(σ).
\]
In general,
\[
\ln\text{normalden}(z, µ, σ) = \ln \left[\frac{1}{σ\sqrt{2\pi}} e^{-\frac{1}{2} \left\{ \frac{(z-µ)}{σ} \right\}^2} \right]
\]
Domain x: \(-8e+307\) to \(8e+307\)
Domain µ: \(-8e+307\) to \(8e+307\)
Domain σ: \(1e–323\) to \(8e+307\)
Range: \(1e–323\) to \(8e+307\)

lnnormal(z)
Description: the natural logarithm of the cumulative standard normal distribution
\[
\ln\text{normal}(z) = \ln \left(\int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \right)
\]
Domain: \(-1e+99\) to \(8e+307\)
Range: \(-5e+197\) to 0
binormal(h, k, ρ)
Description: the joint cumulative distribution $\Phi(h, k, \rho)$ of bivariate normal with correlation ρ
Cumulative over $(-\infty, h] \times (-\infty, k]$:
$$
\Phi(h, k, \rho) = \frac{1}{2\pi\sqrt{1-\rho^2}} \int_{-\infty}^{h} \int_{-\infty}^{k} \exp\left\{-\frac{1}{2(1-\rho^2)} \left(x_1^2 - 2\rho x_1 x_2 + x_2^2 \right) \right\} dx_1 dx_2
$$
Domain h: $-8e+307$ to $8e+307$
Domain k: $-8e+307$ to $8e+307$
Domain ρ: -1 to 1
Range: 0 to 1

lnmvnormalden(M, V, X)
Description: the natural logarithm of the multivariate normal density
M is the mean vector, V is the covariance matrix, and X is the random vector.
Domain M: $1 \times n$ and $n \times 1$ vectors
Domain V: $n \times n$, positive-definite, symmetric matrices
Domain X: $1 \times n$ and $n \times 1$ vectors
Range: $-8e+307$ to $8e+307$

Poisson distribution

poissonp(m, k)
Description: the probability of observing $\text{floor}(k)$ outcomes that are distributed as Poisson with mean m
The Poisson probability function is evaluated using $\text{gammaden}()$.
Domain m: $1e-10$ to $1e+8$
Domain k: 0 to $1e+9$
Range: 0 to 1

poisson(m, k)
Description: the probability of observing $\text{floor}(k)$ or fewer outcomes that are distributed as Poisson with mean m
The Poisson distribution function is evaluated using $\text{gammap}()$.
Domain m: $1e-10$ to $2^{53} - 1$
Domain k: 0 to $2^{53} - 1$
Range: 0 to 1

poissonc(m, k)
Description: the probability of observing $\text{floor}(k)$ or more outcomes that are distributed as Poisson with mean m
The reverse cumulative Poisson distribution function is evaluated using $\text{gammapp}()$.
Domain m: $1e-10$ to $2^{53} - 1$
Domain k: 0 to $2^{53} - 1$
Range: 0 to 1
invpoisson(k,p)
Description: the Poisson mean such that the cumulative Poisson distribution evaluated at k is p: if $\text{poisson}(m,k) = p$, then $\text{invpoisson}(k,p) = m$
Domain k: 0 to $2^{53} - 1$
Domain p: 0 to 1 (exclusive)
Range: $1.110\text{e}{-16}$ to 2^{53}

invpoissontail(k,q)
Description: the Poisson mean such that the reverse cumulative Poisson distribution evaluated at k is q: if $\text{poissontail}(m,k) = q$, then $\text{invpoissontail}(k,q) = m$
Domain k: 0 to $2^{53} - 1$
Domain q: 0 to 1 (exclusive)
Range: 0 to 2^{53} (left exclusive)

Student’s t and noncentral Student’s t distributions

tden(df,t)
Description: the probability density function of Student’s t distribution
$$t\text{den}(df,t) = \frac{\Gamma\{(df + 1)/2\}}{\sqrt{\pi df \Gamma(df/2)}} \cdot \left(1 + t^2/df\right)^{-(df+1)/2}$$
Domain df: 1e–323 to 8e+307 (may be nonintegral)
Domain t: $-8e+307$ to 8e+307
Range: 0 to 0.39894 ...

t(df,t)
Description: the cumulative Student’s t distribution with df degrees of freedom
Domain df: 2e+10 to 2e+17 (may be nonintegral)
Domain t: $-8e+307$ to 8e+307
Range: 0 to 1

ttail(df,t)
Description: the reverse cumulative (upper tail or survivor) Student’s t distribution; the probability $T > t$
$$ttail(df,t) = \int_{t}^{\infty} \frac{\Gamma\{(df + 1)/2\}}{\sqrt{\pi df \Gamma(df/2)}} \cdot \left(1 + x^2/df\right)^{-(df+1)/2} dx$$
Domain df: 2e–10 to 2e+17 (may be nonintegral)
Domain t: $-8e+307$ to 8e+307
Range: 0 to 1
invt(df, p)
Description: the inverse cumulative Student’s t distribution: if \(t(df, t) = p \), then \(\text{invt}(df, p) = t \)
Domain df: 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: \(-8e+307\) to \(8e+307\)

invttail(df, p)
Description: the inverse reverse cumulative (upper tail or survivor) Student’s t distribution: if \(\text{ttail}(df, t) = p \), then \(\text{invttail}(df, p) = t \)
Domain df: 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: \(-8e+307\) to \(8e+307\)

invnt(df, np, p)
Description: the inverse cumulative noncentral Student’s t distribution: if \(\text{nt}(df, np, t) = p \), then \(\text{invnt}(df, np, p) = t \)
Domain df: 1 to 1e+6 (may be nonintegral)
Domain np: \(-1,000\) to 1,000
Domain p: 0 to 1
Range: \(-8e+307\) to \(8e+307\)

invnttail(df, np, p)
Description: the inverse reverse cumulative (upper tail or survivor) noncentral Student’s t distribution: if \(\text{nttail}(df, np, t) = p \), then \(\text{invnttail}(df, np, p) = t \)
Domain df: 1 to 1e+6 (may be nonintegral)
Domain np: \(-1,000\) to 1,000
Domain p: 0 to 1
Range: \(-8e+10\) to \(8e+10\)

ntden(df, np, t)
Description: the probability density function of the noncentral Student’s t distribution with df degrees of freedom and noncentrality parameter np
Domain df: 1e–100 to 1e+10 (may be nonintegral)
Domain np: \(-1,000\) to 1,000
Domain t: \(-8e+307\) to \(8e+307\)
Range: 0 to 0.39894 ...

nt(df, np, t)
Description: the cumulative noncentral Student’s t distribution with df degrees of freedom and noncentrality parameter np
\(\text{nt}(df, 0, t) = t(df, t) \).
Domain df: 1e–100 to 1e+10 (may be nonintegral)
Domain np: \(-1,000\) to 1,000
Domain t: \(-8e+307\) to \(8e+307\)
Range: 0 to 1
nttail(df, np, t)

Description: the reverse cumulative (upper tail or survivor) noncentral Student’s t distribution with df degrees of freedom and noncentrality parameter np

Domain df: 1e–100 to 1e+10 (may be nonintegral)
Domain np: $-1,000$ to $1,000$
Domain t: $-8e+307$ to $8e+307$
Range: 0 to 1

npnt(df, t, p)

Description: the noncentrality parameter, np, for the noncentral Student’s t distribution: if nttail(df, np, t) = p, then npnt(df, t, p) = np

Domain df: 1e–100 to 1e+8 (may be nonintegral)
Domain t: $-8e+307$ to $8e+307$
Domain p: 0 to 1
Range: $-1,000$ to $1,000$

Tukey’s Studentized range distribution

tukeyprob(k, df, x)

Description: the cumulative Tukey’s Studentized range distribution with k ranges and df degrees of freedom; 0 if $x < 0$

If df is a missing value, then the normal distribution is used instead of Student’s t.

tukeyprob() is computed using an algorithm described in Miller (1981).

Domain k: 2 to 1e+6
Domain df: 2 to 1e+6
Domain x: $-8e+307$ to $8e+307$
Range: 0 to 1

invtukeyprob(k, df, p)

Description: the inverse cumulative Tukey’s Studentized range distribution with k ranges and df degrees of freedom

If df is a missing value, then the normal distribution is used instead of Student’s t.
If $\text{tukeyprob}(k, df, x) = p$, then $\text{invtukeyprob}(k, df, p) = x$.

invtukeyprob() is computed using an algorithm described in Miller (1981).

Domain k: 2 to 1e+6
Domain df: 2 to 1e+6
Domain p: 0 to 1
Range: 0 to $8e+307$
Weibull distribution

\texttt{weibullden}(a,b,x)

Description: the probability density function of the Weibull distribution with shape \(a\) and scale \(b\)

\[\text{weibullden}(a,b,x) = \text{weibullden}(a, b, 0, x),\]

where \(a\) is the shape, \(b\) is the scale, and \(x\) is the value of Weibull random variable.

Domain \(a\): 1e–323 to 8e+307
Domain \(b\): 1e–323 to 8e+307
Domain \(x\): 1e–323 to 8e+307
Range: 0 to 1

\texttt{weibullden}(a,b,g,x)

Description: the probability density function of the Weibull distribution with shape \(a\), scale \(b\), and location \(g\)

The probability density function of the generalized Weibull distribution is defined as

\[\frac{a}{b} \left(\frac{x-g}{b} \right)^{a-1} \exp \left\{ - \left(\frac{x-g}{b} \right)^a \right\} \]

for \(x \geq g\) and 0 for \(x < g\), where \(a\) is the shape, \(b\) is the scale, \(g\) is the location parameter, and \(x\) is the value of a generalized Weibull random variable.

Domain \(a\): 1e–323 to 8e+307
Domain \(b\): 1e–323 to 8e+307
Domain \(g\): \(-8e+307\) to \(8e+307\)
Domain \(x\): \(-8e+307\) to \(8e+307\); interesting domain is \(x \geq g\)
Range: 0 to 1

\texttt{weibull}(a,b,x)

Description: the cumulative Weibull distribution with shape \(a\) and scale \(b\)

\[\text{weibull}(a,b,x) = \text{weibull}(a, b, 0, x),\]

where \(a\) is the shape, \(b\) is the scale, and \(x\) is the value of Weibull random variable.

Domain \(a\): 1e–323 to 8e+307
Domain \(b\): 1e–323 to 8e+307
Domain \(x\): 1e–323 to 8e+307
Range: 0 to 1
weibull\((a,b,g,x)\)
Description: the cumulative Weibull distribution with shape \(a\), scale \(b\), and location \(g\)

The cumulative Weibull distribution is defined as

\[
1 - \exp\left[- \left(\frac{x - g}{b} \right)^a \right]
\]

for \(x \geq g\) and 0 for \(x < g\), where \(a\) is the shape, \(b\) is the scale, \(g\) is the location parameter, and \(x\) is the value of a Weibull random variable.

The mean of the Weibull distribution is \(g + b\Gamma\left((a + 1)/a\right)\) and its variance is \(b^2 \left(\Gamma\left((a + 2)/a\right) - \left[\Gamma\left((a + 1)/a\right) \right]^2 \right)\) where \(\Gamma()\) is the gamma function described in lngamma().

Domain \(a\): 1e–323 to 8e+307
Domain \(b\): 1e–323 to 8e+307
Domain \(g\): −8e+307 to 8e+307
Domain \(x\): −8e+307 to 8e+307; interesting domain is \(x \geq g\)
Range: 0 to 1

weibulltail\((a,b,x)\)
Description: the reverse cumulative Weibull distribution with shape \(a\) and scale \(b\)

\[
\text{weibulltail}(a,b,x) = \text{weibulltail}(a,b,0,x),\text{ where } a \text{ is the shape, } b \text{ is the scale, and } x \text{ is the value of a Weibull random variable.}
\]

Domain \(a\): 1e–323 to 8e+307
Domain \(b\): 1e–323 to 8e+307
Domain \(x\): 1e–323 to 8e+307
Range: 0 to 1

weibulltail\((a,b,g,x)\)
Description: the reverse cumulative Weibull distribution with shape \(a\), scale \(b\), and location \(g\)

The reverse cumulative Weibull distribution is defined as

\[
\exp\left\{ - \left(\frac{x - g}{b} \right)^a \right\}
\]

for \(x \geq g\) and 0 if \(x < g\), where \(a\) is the shape, \(b\) is the scale, \(g\) is the location parameter, and \(x\) is the value of a generalized Weibull random variable.

Domain \(a\): 1e–323 to 8e+307
Domain \(b\): 1e–323 to 8e+307
Domain \(g\): −8e+307 to 8e+307
Domain \(x\): −8e+307 to 8e+307; interesting domain is \(x \geq g\)
Range: 0 to 1
invweibull\((a, b, p)\)
Description: the inverse cumulative Weibull distribution with shape \(a\) and scale \(b\): if \(\text{weibull}(a, b, x) = p\), then \(\text{invweibull}(a, b, p) = x\)
Domain \(a\): 1e–323 to 8e+307
Domain \(b\): 1e–323 to 8e+307
Domain \(p\): 0 to 1
Range: 1e–323 to 8e+307

invweibull\((a, b, g, p)\)
Description: the inverse cumulative Weibull distribution with shape \(a\), scale \(b\), and location \(g\): if \(\text{weibull}(a, b, g, x) = p\), then \(\text{invweibull}(a, b, g, p) = x\)
Domain \(a\): 1e–323 to 8e+307
Domain \(b\): 1e–323 to 8e+307
Domain \(g\): −8e+307 to 8e+307
Domain \(p\): 0 to 1
Range: \(g + c(\text{epsdouble})\) to 8e+307

invweibulltail\((a, b, p)\)
Description: the inverse reverse cumulative Weibull distribution with shape \(a\) and scale \(b\): if \(\text{weibulltail}(a, b, x) = p\), then \(\text{invweibulltail}(a, b, p) = x\)
Domain \(a\): 1e–323 to 8e+307
Domain \(b\): 1e–323 to 8e+307
Domain \(p\): 0 to 1
Range: 1e–323 to 8e+307

invweibulltail\((a, b, g, p)\)
Description: the inverse reverse cumulative Weibull distribution with shape \(a\), scale \(b\), and location \(g\): if \(\text{weibull}(a, b, g, x) = p\), then \(\text{invweibulltail}(a, b, g, p) = x\)
Domain \(a\): 1e–323 to 8e+307
Domain \(b\): 1e–323 to 8e+307
Domain \(g\): −8e+307 to 8e+307
Domain \(p\): 0 to 1
Range: \(g + c(\text{epsdouble})\) to 8e+307

Weibull (proportional hazards) distribution

weibullphden\((a, b, x)\)
Description: the probability density function of the Weibull (proportional hazards) distribution with shape \(a\) and scale \(b\)
\(\text{weibullphden}(a, b, x) = \text{weibullphden}(a, b, 0, x)\), where \(a\) is the shape, \(b\) is the scale, and \(x\) is the value of Weibull (proportional hazards) random variable.
Domain \(a\): 1e–323 to 8e+307
Domain \(b\): 1e–323 to 8e+307
Domain \(x\): 1e–323 to 8e+307
Range: 0 to 1
weibullphden(a,b,g,x)
Description: the probability density function of the Weibull (proportional hazards) distribution with shape a, scale b, and location g

The probability density function of the Weibull (proportional hazards) distribution is defined as

\[ba(x - g)^{a-1} \exp \{-b(x - g)^a\} \]

for \(x \geq g \) and 0 for \(x < g \), where \(a \) is the shape, \(b \) is the scale, \(g \) is the location parameter, and \(x \) is the value of a Weibull (proportional hazards) random variable.

Domain \(a \): \(1e-323 \) to \(8e+307 \)
Domain \(b \): \(1e-323 \) to \(8e+307 \)
Domain \(g \): \(-8e+307 \) to \(8e+307 \)
Domain \(x \): \(-8e+307 \) to \(8e+307 \); interesting domain is \(x \geq g \)
Range: 0 to 1

weibullph(a,b,x)
Description: the cumulative Weibull (proportional hazards) distribution with shape a and scale b

\[\text{weibullph}(a,b,x) = \text{weibullph}(a, b, 0, x) \], where \(a \) is the shape, \(b \) is the scale, and \(x \) is the value of Weibull random variable.

Domain \(a \): \(1e-323 \) to \(8e+307 \)
Domain \(b \): \(1e-323 \) to \(8e+307 \)
Domain \(x \): \(1e-323 \) to \(8e+307 \)
Range: 0 to 1

weibullph(a,b,g,x)
Description: the cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g

The cumulative Weibull (proportional hazards) distribution is defined as

\[1 - \exp \{-b(x - g)^a\} \]

for \(x \geq g \) and 0 if \(x < g \), where \(a \) is the shape, \(b \) is the scale, \(g \) is the location parameter, and \(x \) is the value of a Weibull (proportional hazards) random variable. The mean of the Weibull (proportional hazards) distribution is

\[g + b^{-\frac{1}{a}} \Gamma\left\{(a + 1)/a\right\} \]

and its variance is

\[b^{-\frac{2}{a}} \left(\Gamma\{(a + 2)/a\} - \left[\Gamma\{(a + 1)/a\}\right]^2\right) \]

where \(\Gamma() \) is the gamma function described in \text{lgamma}(x) .

Domain \(a \): \(1e-323 \) to \(8e+307 \)
Domain \(b \): \(1e-323 \) to \(8e+307 \)
Domain \(g \): \(-8e+307 \) to \(8e+307 \)
Domain \(x \): \(-8e+307 \) to \(8e+307 \); interesting domain is \(x \geq g \)
Range: 0 to 1
weibullphtail\((a,b,x)\)

Description: the reverse cumulative Weibull (proportional hazards) distribution with shape \(a\) and scale \(b\)

\[
\text{weibullphtail}(a,b,x) = \text{weibullphtail}(a,b,0,x)
\]

where \(a\) is the shape, \(b\) is the scale, and \(x\) is the value of a Weibull (proportional hazards) random variable.

- **Domain** \(a\): \(1e^{-323}\) to \(8e+307\)
- **Domain** \(b\): \(1e^{-323}\) to \(8e+307\)
- **Domain** \(x\): \(1e^{-323}\) to \(8e+307\)
- **Range**: 0 to 1

weibullphtail\((a,b,g,x)\)

Description: the reverse cumulative Weibull (proportional hazards) distribution with shape \(a\), scale \(b\), and location \(g\)

The reverse cumulative Weibull (proportional hazards) distribution is defined as

\[
\exp\{-b(x-g)^a\}
\]

for \(x \geq g\) and 0 of \(x < g\), where \(a\) is the shape, \(b\) is the scale, \(g\) is the location parameter, and \(x\) is the value of a Weibull (proportional hazards) random variable.

- **Domain** \(a\): \(1e^{-323}\) to \(8e+307\)
- **Domain** \(b\): \(1e^{-323}\) to \(8e+307\)
- **Domain** \(g\): \(-8e+307\) to \(8e+307\)
- **Domain** \(x\): \(-8e+307\) to \(8e+307\); interesting domain is \(x \geq g\)
- **Range**: 0 to 1

invweibullph\((a,b,p)\)

Description: the inverse cumulative Weibull (proportional hazards) distribution with shape \(a\) and scale \(b\): if \(\text{weibullph}(a,b,x) = p\), then \(\text{invweibullph}(a,b,p) = x\)

- **Domain** \(a\): \(1e^{-323}\) to \(8e+307\)
- **Domain** \(b\): \(1e^{-323}\) to \(8e+307\)
- **Domain** \(p\): 0 to 1
- **Range**: \(1e^{-323}\) to \(8e+307\)

invweibullph\((a,b,g,p)\)

Description: the inverse cumulative Weibull (proportional hazards) distribution with shape \(a\), scale \(b\), and location \(g\): if \(\text{weibullph}(a,b,g,x) = p\), then \(\text{invweibullph}(a,b,g,p) = x\)

- **Domain** \(a\): \(1e^{-323}\) to \(8e+307\)
- **Domain** \(b\): \(1e^{-323}\) to \(8e+307\)
- **Domain** \(g\): \(-8e+307\) to \(8e+307\)
- **Domain** \(p\): 0 to 1
- **Range**: \(g + c(\text{epsdouble})\) to \(8e+307\)

invweibullphtail\((a,b,p)\)

Description: the inverse reverse cumulative Weibull (proportional hazards) distribution with shape \(a\) and scale \(b\): if \(\text{weibullphtail}(a,b,x) = p\), then \(\text{invweibullphtail}(a,b,p) = x\)

- **Domain** \(a\): \(1e^{-323}\) to \(8e+307\)
- **Domain** \(b\): \(1e^{-323}\) to \(8e+307\)
- **Domain** \(p\): 0 to 1
- **Range**: \(1e^{-323}\) to \(8e+307\)
invweibullphtail\((a,b,g,p)\)

Description: the inverse reverse cumulative Weibull (proportional hazards) distribution with shape \(a\), scale \(b\), and location \(g\): if \(\text{weibullphtail}(a,b,g,x) = p\), then \(\text{invweibullphtail}(a,b,g,p) = x\)

Domain \(a\): 1e–323 to 8e+307
Domain \(b\): 1e–323 to 8e+307
Domain \(g\): −8e+307 to 8e+307
Domain \(p\): 0 to 1
Range: \(g + c(\text{epsdouble})\) to 8e+307

Wishart distribution

\(\ln\text{wishartden}(df,V,X)\)

Description: the natural logarithm of the density of the Wishart distribution; missing if \(df \leq n - 1\)

\(df\) denotes the degrees of freedom, \(V\) is the scale matrix, and \(X\) is the Wishart random matrix.

Domain \(df\): 1 to 1e+100 (may be nonintegral)
Domain \(V\): \(n \times n\), positive-definite, symmetric matrices
Domain \(X\): \(n \times n\), positive-definite, symmetric matrices
Range: −8e+307 to 8e+307

\(\ln\text{iwishartden}(df,V,X)\)

Description: the natural logarithm of the density of the inverse Wishart distribution; missing if \(df \leq n - 1\)

\(df\) denotes the degrees of freedom, \(V\) is the scale matrix, and \(X\) is the inverse Wishart random matrix.

Domain \(df\): 1 to 1e+100 (may be nonintegral)
Domain \(V\): \(n \times n\), positive-definite, symmetric matrices
Domain \(X\): \(n \times n\), positive-definite, symmetric matrices
Range: −8e+307 to 8e+307

References

Also see

[FN] **Functions by category**

[D] *egen* — Extensions to generate

[D] *generate* — Create or change contents of variable

[M-4] *statistical* — Statistical functions

[U] 13.3 Functions
String functions

<table>
<thead>
<tr>
<th>Contents</th>
<th>Functions</th>
<th>References</th>
<th>Also see</th>
</tr>
</thead>
<tbody>
<tr>
<td>abbrev(s,n)</td>
<td>name s, abbreviated to a length of n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>char(n)</td>
<td>the character corresponding to ASCII or extended ASCII code n; "" if n is not in the domain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>collatorlocale(loc,type)</td>
<td>the most closely related locale supported by ICU from loc if type is 1; the actual locale where the collation data comes from if type is 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>collatorversion(loc)</td>
<td>the version string of a collator based on locale loc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>indexnot(s₁,s₂)</td>
<td>the position in ASCII string s₁ of the first character of s₁ not found in ASCII string s₂, or 0 if all characters of s₁ are found in s₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plural(n,s)</td>
<td>the plural of s if n ≠ ±1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plural(n,s₁,s₂)</td>
<td>the plural of s₁, as modified by or replaced with s₂, if n ≠ ±1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real(s)</td>
<td>s converted to numeric or missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>regexm(s,re)</td>
<td>performs a match of a regular expression and evaluates to 1 if regular expression re is satisfied by the ASCII string s; otherwise, 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>regexr(s₁,re,s₂)</td>
<td>replaces the first substring within ASCII string s₁ that matches re with ASCII string s₂ and returns the resulting string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>regexs(n)</td>
<td>subexpression n from a previous regexm() match, where 0 ≤ n < 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>soundex(s)</td>
<td>the soundex code for a string, s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>soundex_nara(s)</td>
<td>the U.S. Census soundex code for a string, s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strcat(s₁,s₂)</td>
<td>there is no strcat() function; instead the addition operator is used to concatenate strings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strdup(s₁,n)</td>
<td>there is no strdup() function; instead the multiplication operator is used to create multiple copies of strings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>string(n)</td>
<td>a synonym for strofreal(n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>string(n,s)</td>
<td>a synonym for strofreal(n,s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stritrim(s)</td>
<td>s with multiple, consecutive internal blanks (ASCII space character char(32)) collapsed to one blank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strlen(s)</td>
<td>the number of characters in ASCII s or length in bytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strlower(s)</td>
<td>lowercase ASCII characters in string s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strltrim(s)</td>
<td>s without leading blanks (ASCII space character char(32))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strmatch(s₁,s₂)</td>
<td>1 if s₁ matches the pattern s₂; otherwise, 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strofreal(n)</td>
<td>n converted to a string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strofreal(n,s)</td>
<td>n converted to a string using the specified display format</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strpos(s₁,s₂)</td>
<td>the position in s₁ at which s₂ is first found; otherwise, 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strpos(s₁,s₂)</td>
<td>a string with the first ASCII letter and any other letters immediately following characters that are not letters capitalized; all other ASCII letters converted to lowercase</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
126 String functions

- `strreverse(s)` reverses the ASCII string `s`.
- `strrpos(s1, s2)` the position in `s1` at which `s2` is last found; otherwise, 0.
- `strrtrim(s)` `s` without trailing blanks (ASCII space character `char(32)`).
- `strtoname(s[, p])` `s` translated into a Stata 13 compatible name.
- `strtrim(s)` `s` without leading and trailing blanks (ASCII space character `char(32)`); equivalent to `strtrim(strrtrim(s))`.
- `strupper(s)` uppercase ASCII characters in string `s`.
- `subinseq(s1, s2, s3, n)` `s1`, where the first `n` occurrences in `s1` of `s2` have been replaced with `s3`.
- `subinword(s1, s2, s3, n)` `s1`, where the first `n` occurrences in `s1` of `s2` as a word have been replaced with `s3`.
- `substr(s, n1, n2)` the substring of `s`, starting at `n1`, for a length of `n2`.
- `tobytes(s[, n])` escaped decimal or hex digit strings of up to 200 bytes of `s`.
- `uchar(n)` the Unicode character corresponding to Unicode code point `n` or an empty string if `n` is beyond the Unicode code-point range.
- `udstrlen(s)` the number of display columns needed to display the Unicode string `s` in the Stata Results window.
- `udsubstr(s, n1, n2)` the Unicode substring of `s`, starting at character `n1`, for `n2` display columns.
- `uisdigit(s)` 1 if the first Unicode character in `s` is a Unicode decimal digit; otherwise, 0.
- `uisletter(s)` 1 if the first Unicode character in `s` is a Unicode letter; otherwise, 0.
- `ustrcompare(s1, s2[, loc])` compares two Unicode strings.
- `ustrcompareex(s1, s2, loc, case, cslv, norm, num, alt, fr)` compares two Unicode strings.
- `ustrfix(s[, rep])` replaces each invalid UTF-8 sequence with a Unicode character.
- `ustrfrom(s, enc, mode)` converts the string `s` in encoding `enc` to a UTF-8 encoded Unicode string.
- `ustrinvalidcnt(s)` the number of invalid UTF-8 sequences in `s`.
- `ustrleft(s, n)` the first `n` Unicode characters of the Unicode string `s`.
- `ustrlen(s)` the number of characters in the Unicode string `s`.
- `ustrlower(s[, loc])` lowercase all characters of Unicode string `s` under the given locale `loc`.
- `ustrltrim(s)` removes the leading Unicode whitespace characters and blanks from the Unicode string `s`.
- `ustrnormalize(s, norm)` normalizes Unicode string `s` to one of the five normalization forms specified by `norm`.
- `ustrregexm(s, re[, noc])` performs a match of a regular expression and evaluates to 1 if regular expression `re` is satisfied by the Unicode string `s`; otherwise, 0.
- `ustrregexra(s1, re, s2[, noc])` replaces all substrings within the Unicode string `s1` that match `re` with `s2` and returns the resulting string.
- `ustrregexrf(s1, re, s2[, noc])` replaces the first substring within the Unicode string `s1` that matches `re` with `s2` and returns the resulting string.
- `ustrregexs(n)` subexpression `n` from a previous `ustrregexm()` match.
- `ustrreverse(s)` reverses the Unicode string `s`.

Note: The text seems to be a mix of programming and documentation, possibly extracted from a software manual or API documentation. The symbols and functions appear to be related to string manipulation and Unicode handling. The text is partially visible, with some parts cut off, suggesting it might be a part of a larger document or program.
In the display below, \(s \) indicates a string subexpression (a string literal, a string variable, or another string expression) and \(n \) indicates a numeric subexpression (a number, a numeric variable, or another numeric expression).

If your strings contain Unicode characters or you are writing programs that will be used by others who might use Unicode strings, read \([U]\) 12.4.2 Handling Unicode strings.
abbrev(s,n)

Description: name s, abbreviated to a length of n

Length is measured in the number of display columns, not in the number of characters. For most users, the number of display columns equals the number of characters. For a detailed discussion of display columns, see [U] 12.4.2.2 Displaying Unicode characters.

If any of the characters of s are a period, “.”, and \(n < 8 \), then the value of \(n \) defaults to a value of 8. Otherwise, if \(n < 5 \), then \(n \) defaults to a value of 5. If \(n \) is missing, `abbrev()` will return the entire string s. `abbrev()` is typically used with variable names and variable names with factor-variable or time-series operators (the period case).

`abbrev("displacement",8)` is displa-t.

Domain s: strings

Domain n: integers 5 to 32

Range: strings

char(n)

Description: the character corresponding to ASCII or extended ASCII code \(n \); "" if \(n \) is not in the domain

Note: ASCII codes are from 0 to 127; extended ASCII codes are from 128 to 255. Prior to Stata 14, the display of extended ASCII characters was encoding dependent. For example, `char(128)` on Microsoft Windows using Windows-1252 encoding displayed the Euro symbol, but on Linux using ISO-Latin-1 encoding, `char(128)` displayed an invalid character symbol. Beginning with Stata 14, Stata’s display encoding is UTF-8 on all platforms. The `char(128)` function is an invalid UTF-8 sequence and thus will display a question mark. There are two Unicode functions corresponding to `char()`: `uchar()` and `ustrunescape()`. You can use `uchar(8364)` or `ustrunescape("\u20AC")` to display a Euro sign on all platforms.

Domain n: integers 0 to 255

Range: ASCII characters

uchar(n)

Description: the Unicode character corresponding to Unicode code point \(n \) or an empty string if \(n \) is beyond the Unicode code-point range

Note that `uchar()` takes the decimal value of the Unicode code point. `ustrunescape()` takes an escaped hex digit string of the Unicode code point. For example, both `uchar(8364)` and `ustrunescape("\u20ac")` produce the Euro sign.

Domain n: integers \(\geq 0 \)

Range: Unicode characters
collatorlocale(loc, type)

Description: the most closely related locale supported by ICU from loc if type is 1; the actual locale where the collation data comes from if type is 2

For any other type, loc is returned in a canonicalized form.

```plaintext
collatorlocale("en_us_texas", 0) = en_US_Texas
collatorlocale("en_us_texas", 1) = en_US
collatorlocale("en_us_texas", 2) = root
```

Domain **loc**: strings of locale name
Domain **type**: integers
Range: strings

collatorversion(loc)

Description: the version string of a collator based on locale loc

The Unicode standard is constantly adding more characters and the sort key format may change as well. This can cause `ustrsortkey()` and `ustrsortkeyex()` to produce incompatible sort keys between different versions of International Components for Unicode. The version string can be used for versioning the sort keys to indicate when saved sort keys must be regenerated.

Range: strings

indexnot(s1, s2)

Description: the position in ASCII string `s1` of the first character of `s1` not found in ASCII string `s2`, or 0 if all characters of `s1` are found in `s2`

`indexnot()` is intended for use with only plain ASCII strings. For Unicode characters beyond the plain ASCII range, the position and character are given in bytes, not characters.

Domain **s1**: ASCII strings (to be searched)
Domain **s2**: ASCII strings (to search for)
Range: integers ≥ 0

plural(n, s)

Description: the plural of `s` if `n` ≠ ±1

The plural is formed by adding “s” to `s`.

```plaintext
plural(1, "horse") = "horse"
plural(2, "horse") = "horses"
```

Domain **n**: real numbers
Domain **s**: strings
Range: strings
plural(n, s_1, s_2)
Description: the plural of s_1, as modified by or replaced with s_2, if $n \neq \pm 1$
If s_2 begins with the character “+”, the plural is formed by adding the remainder of s_2 to s_1. If s_2 begins with the character “-”, the plural is formed by subtracting the remainder of s_2 from s_1. If s_2 begins with neither “+” nor “-”, then the plural is formed by returning s_2.

\[
\begin{align*}
\text{plural}(2, "glass", "+es") &= "glasses" \\
\text{plural}(1, "mouse", "mice") &= "mouse" \\
\text{plural}(2, "mouse", "mice") &= "mice" \\
\text{plural}(2, "abcdefg", "-efg") &= "abcd"
\end{align*}
\]
Domain n: real numbers
Domain s_1: strings
Domain s_2: strings
Range: strings

real(s)
Description: s converted to numeric or missing
Also see stofreal().
real("5.2") + 1 = 6.2
real("hello") = .
Domain s: strings
Range: $-8e+307$ to $8e+307$ or missing

regexm(s, re)
Description: performs a match of a regular expression and evaluates to 1 if regular expression re is satisfied by the ASCII string s; otherwise, 0
Regular expression syntax is based on Henry Spencer’s NFA algorithm, and this is nearly identical to the POSIX.2 standard. s and re may not contain binary 0 (\0).
regexm() is intended for use with only plain ASCII characters. For Unicode characters beyond the plain ASCII range, the match is based on bytes. For a character-based match, see ustrregexm().
Domain s: ASCII strings
Domain re: regular expressions
Range: ASCII strings
regexr(s_1, re, s_2)
Description: replaces the first substring within ASCII string s_1 that matches re with ASCII string s_2 and returns the resulting string
If s_1 contains no substring that matches re, the unaltered s_1 is returned. s_1 and the result of regexr() may be at most 1,100,000 characters long. s_1, re, and s_2 may not contain binary 0 (\0).
regexr() is intended for use with only plain ASCII characters. For Unicode characters beyond the plain ASCII range, the match is based on bytes and the result is restricted to 1,100,000 bytes. For a character-based match, see ustrregexrf() or ustrregexra().

Domain s_1: ASCII strings
Domain re: regular expressions
Domain s_2: ASCII strings
Range: ASCII strings

regexs(n)
Description: subexpression n from a previous regexm() match, where $0 \leq n < 10$
Subexpression 0 is reserved for the entire string that satisfied the regular expression. The returned subexpression may be at most 1,100,000 characters (bytes) long.
Domain n: 0 to 9
Range: ASCII strings

ustrregexm($s, re[, noc]$)
Description: performs a match of a regular expression and evaluates to 1 if regular expression re is satisfied by the Unicode string s; otherwise, 0
If noc is specified and not 0, a case-insensitive match is performed. The function may return a negative integer if an error occurs.

ustrregexm("12345", "([0-9]{5})") = 1
ustrregexm("de TRÈS près", "rè$\$s") = 1
ustrregexm("de TRÈS près", "Rè$\$s") = 0
ustrregexm("de TRÈS près", "Rè$\$, 1) = 1

Domain s: Unicode strings
Domain re: Unicode regular expressions
Domain noc: integers
Range: integers
ustrregexrf($s_1, re, s_2[, noc])
Description: replaces the first substring within the Unicode string s_1 that matches re with s_2 and returns the resulting string.

If noc is specified and not 0, a case-insensitive match is performed. The function may return an empty string if an error occurs.

ustrregexrf("très près", "rès", "X") = "tX près"
ustrregexrf("TRÈS près", "Rès", "X") = "TRÈS près"
ustrregexrf("TRÈS près", "Rès", "X", 1) = "TX près"

Domain s_1: Unicode strings
Domain re: Unicode regular expressions
Domain s_2: Unicode strings
Domain noc: integers
Range: Unicode strings

ustrregexra($s_1, re, s_2[, noc])
Description: replaces all substrings within the Unicode string s_1 that match re with s_2 and returns the resulting string.

If noc is specified and not 0, a case-insensitive match is performed. The function may return an empty string if an error occurs.

ustrregexra("très près", "rès", "X") = "tX pX"
ustrregexra("TRÈS près", "Rès", "X") = "TRÈS près"
ustrregexra("TRÈS près", "Rès", "X", 1) = "TX pX"

Domain s_1: Unicode strings
Domain re: Unicode regular expressions
Domain s_2: Unicode strings
Domain noc: integers
Range: Unicode strings

ustrregexs(n)
Description: subexpression n from a previous $ustrregexm()$ match

Subexpression 0 is reserved for the entire string that satisfied the regular expression. The function may return an empty string if n is larger than the maximum count of subexpressions from the previous match or if an error occurs.

Domain n: integers ≥ 0
Range: strings
soundex(s)
Description: the soundex code for a string, s

The soundex code consists of a letter followed by three numbers: the letter is the first ASCII letter of the name and the numbers encode the remaining consonants. Similar sounding consonants are encoded by the same number. Unicode characters beyond the plain ASCII range are ignored.

\[
\begin{align*}
\text{soundex("Ashcraft")} &= \text{"A226"} \\
\text{soundex("Robert")} &= \text{"R163"} \\
\text{soundex("Rupert")} &= \text{"R163"}
\end{align*}
\]

Domain s: strings
Range: strings

soundex_nara(s)
Description: the U.S. Census soundex code for a string, s

The soundex code consists of a letter followed by three numbers: the letter is the first ASCII letter of the name and the numbers encode the remaining consonants. Similar sounding consonants are encoded by the same number. Unicode characters beyond the plain ASCII range are ignored.

\[
\text{soundex_nara("Ashcraft")} = \text{"A261"}
\]

Domain s: strings
Range: strings

strcat(s_1, s_2)
Description: there is no strcat() function; instead the addition operator is used to concatenate strings

\[
\begin{align*}
"hello " + "world" &= \"hello world\" \\
"a" + "b" &= \"ab\" \\
"Café " + "de Flore" &= \"Café de Flore\"
\end{align*}
\]

Domain s_1: strings
Domain s_2: strings
Range: strings

strdup(s_1, n)
Description: there is no strdup() function; instead the multiplication operator is used to create multiple copies of strings

\[
\begin{align*}
\text{"hello" * 3} &= \"hellohellohello" \\
3 * "hello" &= \"hellohellohello" \\
0 * "hello" &= \"\" \\
\text{"hello" * 1} &= \"hello\" \\
\text{"Здравствуйте " * 2} &= \"Здравствуйте Здравствуйте \"
\end{align*}
\]

Domain s_1: strings
Domain n: nonnegative integers 0, 1, 2, ...
Range: strings
string(n)
Description: a synonym for strofreal(n)

string(n,s)
Description: a synonym for strofreal(n,s)

stritrim(s)
Description: s with multiple, consecutive internal blanks (ASCII space character char(32)) collapsed to one blank
stritrim("hello there") = "hello there"

Domain s: strings
Range: strings with no multiple, consecutive internal blanks

strlen(s)
Description: the number of characters in ASCII s or length in bytes

strlen() is intended for use with only plain ASCII characters and for use by programmers who want to obtain the byte-length of a string. Note that any Unicode character beyond ASCII range (code point greater than 127) takes more than 1 byte in the UTF-8 encoding; for example, é takes 2 bytes.

For the number of characters in a Unicode string, see ustrlen().

strlen("ab") = 2
strlen("é") = 2

Domain s: strings
Range: integers \(\geq 0 \)

ustrlen(s)
Description: the number of characters in the Unicode string s

An invalid UTF-8 sequence is counted as one Unicode character. An invalid UTF-8 sequence may contain one byte or multiple bytes. Note that any Unicode character beyond the plain ASCII range (code point greater than 127) takes more than 1 byte in the UTF-8 encoding; for example, é takes 2 bytes.

ustrlen("médiane") = 7
strlen("médiane") = 8

Domain s: Unicode strings
Range: integers \(\geq 0 \)
String functions

udstrlen(s)

Description: the number of display columns needed to display the Unicode string \(s \) in the Stata Results window

A Unicode character in the CJK (Chinese, Japanese, and Korean) encoding usually requires two display columns; a Latin character usually requires one column. Any invalid UTF-8 sequence requires one column.

\[
\text{udstrlen("中值") = 4}
\]

\[
\text{ustrlen("中值") = 2}
\]

\[
\text{strlen("中值") = 6}
\]

Domain \(s \): Unicode strings
Range: integers \(\geq 0 \)

strlower(s)

Description: lowercase ASCII characters in string \(s \)

Unicode characters beyond the plain ASCII range are ignored.

\[
\text{strlower("THIS") = "this"}
\]

\[
\text{strlower("CAFÉ") = "cafÉ"}
\]

Domain \(s \): strings
Range: strings with lowercased characters

ustrlower(s[,loc])

Description: lowercase all characters of Unicode string \(s \) under the given locale \(loc \)

If \(loc \) is not specified, the default locale is used. The same \(s \) but different \(loc \) may produce different results; for example, the lowercase letter of “I” is “i” in English but a dotless “i” in Turkish. The same Unicode character can be mapped to different Unicode characters based on its surrounding characters; for example, Greek capital letter sigma \(\Sigma \) has two lowercases: \(\varsigma \), if it is the final character of a word, or \(\sigma \). The result can be longer or shorter than the input Unicode string in bytes.

\[
\text{ustrlower("MÉDIANE","fr") = "médiane"}
\]

\[
\text{ustrlower("ISTANBUL","tr") = "istanbul"}
\]

\[
\text{ustrlower("ΟΔΥΣΣΕΥΣΣ","fr") = "δυσσεψυς"}
\]

Domain \(s \): Unicode strings
Domain \(loc \): locale name
Range: Unicode strings

strltrim(s)

Description: \(s \) without leading blanks (ASCII space character \text{char}(32))

\[
\text{strltrim(" this") = "this"}
\]

Domain \(s \): strings
Range: strings without leading blanks
ustrltrim(x)
Description: removes the leading Unicode whitespace characters and blanks from the Unicode string s

Note that, in addition to char(32), ASCII characters char(9), char(10), char(11), char(12), and char(13) are whitespace characters in Unicode standard.

ustrltrim(" this") = "this"
ustrltrim(char(9)+"this") = "this"
ustrltrim(ustrunescape("\u1680")+" this") = "this"

Domain s: Unicode strings
Range: Unicode strings

strmatch(s_1,s_2)
Description: 1 if s_1 matches the pattern s_2; otherwise, 0

strmatch("17.4","1??4") returns 1. In s_2, "?" means that one character goes here, and "*" means that zero or more bytes go here. Note that a Unicode character may contain multiple bytes; thus, using "*" with Unicode characters can infrequently result in matches that do not occur at a character boundary.

Also see regexm(), regexr(), and regexs().

strmatch("café", "caf?") = 1

Domain s_1: strings
Domain s_2: strings
Range: integers 0 or 1

strofreal(n)
Description: n converted to a string

Also see real().

strofreal(4)+"F" = "4F"
strofreal(1234567) = "1234567"
strofreal(12345678) = "1.23e+07"
strofreal(.) = "."

Domain n: $-8e+307$ to $8e+307$ or missing
Range: strings
strofreal(n, s)

Description: n converted to a string using the specified display format

Also see `real()`.

```plaintext
strofreal(4, "%9.2f") = "4.00"
strofreal(123456789, "%11.0g") = "123456789"
strofreal(123456789, "%13.0gc") = "123,456,789"
strofreal(0, "%td") = "01jan1960"
strofreal(225, "%tq") = "2016q2"
strofreal(225, "not a format") = ""
```

Domain n: $-8e+307$ to $8e+307$ or `missing`

Domain s: strings containing `%fmt` numeric display format

strpos(s_1, s_2)

Description: the position in s_1 at which s_2 is first found; otherwise, 0

`strpos()` is intended for use with only plain ASCII characters and for use by programmers who want to obtain the byte-position of s_2. Note that any Unicode character beyond ASCII range (code point greater than 127) takes more than 1 byte in the UTF-8 encoding; for example, é takes 2 bytes.

To find the character position of s_2 in a Unicode string, see `ustrpos()`.

```plaintext
strpos("this", "is") = 3
strpos("this", "it") = 0
```

Domain s_1: strings (to be searched)

Domain s_2: strings (to search for)

Range: integers ≥ 0

ustrpos($s_1, s_2 [, n]$)

Description: the position in s_1 at which s_2 is first found; otherwise, 0

If n is specified and is greater than 0, the search starts at the nth Unicode character of s_1. An invalid UTF-8 sequence in either s_1 or s_2 is replaced with a Unicode replacement character `\ufffd` before the search is performed.

```plaintext
ustrpos("médi\"ane", "édi") = 2
ustrpos("médi\"ane", "édi", 3) = 0
ustrpos("médi\"ane", "éci") = 0
```

Domain s_1: Unicode strings (to be searched)

Domain s_2: Unicode strings (to search for)

Domain n: integers

Range: integers
strproper(s)
Description: a string with the first ASCII letter and any other letters immediately following characters that are not letters capitalized; all other ASCII letters converted to lowercase

strproper() implements a form of titlecasing and is intended for use with only plain ASCII strings. Unicode characters beyond ASCII are treated as characters that are not letters. To titlecase strings with Unicode characters beyond the plain ASCII range or to implement language-sensitive rules for titlecasing, see ustrtitle().

strproper("mR. joHn a. sMitH") = "Mr. John A. Smith"
strproper("jack o’reilly") = "Jack O’Reilly"
strproper("2-cent’s worth") = "2-Cent’S Worth"
strproper("vous êtes") = "Vous Êtes"

Domain s: strings
Range: strings

ustrtitle(s[,loc])
Description: a string with the first characters of Unicode words titlecased and other characters lowercased

If loc is not specified, the default locale is used. Note that a Unicode word is different from a Stata word produced by function word(). The Stata word is a space-separated token. A Unicode word is a language unit based on either a set of word-boundary rules or dictionaries for some languages (Chinese, Japanese, and Thai). The titlecase is also locale dependent and context sensitive; for example, lowercase “ij” is considered a digraph in Dutch. Its titlecase is “IJ”.

ustrtitle("vous êtes", "fr") = "Vous Êtes"
ustrtitle("mR. joHn a. sMitH") = "Mr. John A. Smith"
ustrtitle("ijmuiden", "en") = "Ijmuiden"
ustrtitle("ijmuiden", "nl") = "IJmuiden"

Domain s: Unicode strings
Domain loc: Unicode strings
Range: Unicode strings

strreverse(s)
Description: reverses the ASCII string s

strreverse() is intended for use with only plain ASCII characters. For Unicode characters beyond ASCII range (code point greater than 127), the encoded bytes are reversed.

To reverse the characters of Unicode string, see ustrreverse().

strreverse("hello") = "olleh"

Domain s: ASCII strings
Range: ASCII reversed strings
ustrreverses(s)
Description: reverses the Unicode string s

The function does not take Unicode character equivalence into consideration. Hence, a Unicode character in a decomposed form will not be reversed as one unit. An invalid UTF-8 sequence is replaced with a Unicode replacement character \ufffd.

ustrreverses("médiane") = "enaidém"

Domain s: Unicode strings
Range: reversed Unicode strings

strrpos(s1,s2)
Description: the position in s1 at which s2 is last found; otherwise, 0

strrpos() is intended for use with only plain ASCII characters and for use by programmers who want to obtain the last byte-position of s2. Note that any Unicode character beyond ASCII range (code point greater than 127) takes more than 1 byte in the UTF-8 encoding; for example, é takes 2 bytes.

To find the last character position of s2 in a Unicode string, see ustrrpos().

strrpos("this","is") = 3
strrpos("this is","is") = 6
strrpos("this is","it") = 0

Domain s1: strings (to be searched)
Domain s2: strings (to search for)
Range: integers ≥ 0

ustrrpos(s1,s2[,n])
Description: the position in s1 at which s2 is last found; otherwise, 0

If n is specified and is greater than 0, only the part between the first Unicode character and the nth Unicode character of s1 is searched. An invalid UTF-8 sequence in either s1 or s2 is replaced with a Unicode replacement character \ufffd before the search is performed.

ustrrpos("enchanté", "n") = 6
ustrrpos("enchanté", "n", 5) = 2
ustrrpos("enchanté", "n", 6) = 6
ustrrpos("enchanté", "ne") = 0

Domain s1: Unicode strings (to be searched)
Domain s2: Unicode strings (to search for)
Domain n: integers
Range: integers

strrtrim(s)
Description: s without trailing blanks (ASCII space character char(32))

strrtrim("this ") = "this"

Domain s: strings
Range: strings without trailing blanks
ustrrtrim(s)
Description: remove trailing Unicode whitespace characters and blanks from the Unicode string s
Note that, in addition to char(32), ASCII characters char(9), char(10), char(11), char(12), and char(13) are considered whitespace characters in the Unicode standard.
ustrrtrim("this ") = "this"
ustrltrim("this"+char(10)) = "this"
ustrrtrim("this "+ustrunescape("\u2000")) = "this"
Domain s: Unicode strings
Range: Unicode strings

strtoname(s[,p])
Description: s translated into a Stata 13 compatible name
strtoname() results in a name that is truncated to 32 bytes. Each character in s that is not allowed in a Stata name is converted to an underscore character, _. If the first character in s is a numeric character and p is not 0, then the result is prefixed with an underscore. Stata 14 names may be 32 characters; see [U] 11.3 Naming conventions.
strtoname("name") = "name"
strtoname("a name") = "a_name"
strtoname("5",1) = "_5"
strtoname("5:30",1) = "_5_30"
strtoname("5",0) = "5"
strtoname("5:30",0) = "5_30"
Domain s: strings
Domain p: integers 0 or 1
Range: strings

ustrtoname(s[,p])
Description: string s translated into a Stata name
ustrtoname() results in a name that is truncated to 32 characters. Each character in s that is not allowed in a Stata name is converted to an underscore character, _. If the first character in s is a numeric character and p is not 0, then the result is prefixed with an underscore.
ustrtoname("name",1) = "name"
ustrtoname("the médiane") = "the_médiane"
ustrtoname("0médiante") = "_0médiante"
ustrtoname("0médiante", 1) = "_0médiante"
ustrtoname("0médiante", 0) = "0médiante"
Domain s: Unicode strings
Domain p: integers 0 or 1
Range: Unicode strings
String functions

strtrim(s)
Description: s without leading and trailing blanks (ASCII space character char(32)); equivalent to strltrim(strrtrim(s))

```
strtrim(" this ") = "this"
```

Domain s: strings
Range: strings without leading or trailing blanks

ustrtrim(s)
Description: removes leading and trailing Unicode whitespace characters and blanks from the Unicode string s

Note that, in addition to char(32), ASCII characters char(9), char(10), char(11), char(12), and char(13) are considered whitespace characters in the Unicode standard.

```
ustrtrim(" this ") = "this"
ustrtrim(char(11)+" this ")+char(13) = "this"
ustrtrim(" this "+ustrunescape("\u2000")) = "this"
```

Domain s: Unicode strings
Range: Unicode strings

strupper(s)
Description: uppercase ASCII characters in string s

Unicode characters beyond the plain ASCII range are ignored.

```
strupper("this") = "THIS"
strupper("café") = "CAFé"
```

Domain s: strings
Range: strings with uppercased characters

ustrupper(s[,loc])
Description: uppercase all characters in string s under the given locale loc

If loc is not specified, the default locale is used. The same s but a different loc may produce different results; for example, the uppercase letter of “i” is “I” in English, but “I” with a dot in Turkish. The result can be longer or shorter than the input string in bytes; for example, the uppercase form of the German letter ß (code point \u00df) is two capital letters “SS”.

```
ustrupper("médiiane","fr") = "MÉDIANE"
ustrupper("Rußland", "de") = "RUSSLAND"
ustrupper("istanbul", "tr") = "İSTANBUL"
```

Domain s: Unicode strings
Domain loc: locale name
Range: Unicode strings
subinstr\((s_1, s_2, s_3, n) \)
Description: \(s_1 \), where the first \(n \) occurrences in \(s_1 \) of \(s_2 \) have been replaced with \(s_3 \)

\(\text{subinstr()} \) is intended for use with only plain ASCII characters and for use by programmers who want to perform byte-based substitution. Note that any Unicode character beyond ASCII range (code point greater than 127) takes more than 1 byte in the UTF-8 encoding; for example, \(\acute{e} \) takes 2 bytes.

To perform character-based replacement in Unicode strings, see \(\text{usubinstr()} \).

If \(n \) is missing, all occurrences are replaced.

Also see \(\text{regexm()} \), \(\text{regexr()} \), and \(\text{regexs()} \).

\[
\begin{align*}
\text{subinstr(}"\text{this is the day}","\text{is}","\text{X}","1\text{)} &= \"\text{thX is the day}\"
\text{subinstr(}"\text{this is the hour}","\text{is}","\text{X}","2\text{)} &= \"\text{thX X the hour}\"
\text{subinstr(}"\text{this is this}","\text{is}","\text{X}",".\text{)} &= \"\text{thX X thX}\"
\end{align*}
\]

\(\text{Domain } s_1: \) strings (to be substituted into)
\(\text{Domain } s_2: \) strings (to be substituted from)
\(\text{Domain } s_3: \) strings (to be substituted with)
\(\text{Domain } n: \) integers \(\geq 0 \) or missing
\(\text{Range:} \) strings

usubinstr\((s_1, s_2, s_3, n) \)
Description: replaces the first \(n \) occurrences of the Unicode string \(s_2 \) with the Unicode string \(s_3 \) in \(s_1 \)

If \(n \) is missing, all occurrences are replaced. An invalid UTF-8 sequence in \(s_1 \), \(s_2 \), or \(s_3 \) is replaced with a Unicode replacement character \(\ufffd \) before replacement is performed.

\[
\begin{align*}
\text{usubinstr(}"\text{de très près}","\text{ès}","\text{es}","1\text{)} &= \"\text{de tres près}\"
\text{usubinstr(}"\text{de très près}","\text{ès}","\text{X}","2\text{)} &= \"\text{de trX prX}\"
\end{align*}
\]

\(\text{Domain } s_1: \) Unicode strings (to be substituted into)
\(\text{Domain } s_2: \) Unicode strings (to be substituted from)
\(\text{Domain } s_3: \) Unicode strings (to be substituted with)
\(\text{Domain } n: \) integers \(\leq 0 \) or missing
\(\text{Range:} \) Unicode strings
subinword(*s₁*, *s₂*, *s₃*, *n*)

Description: *s₁*, where the first *n* occurrences in *s₁* of *s₂* as a word have been replaced with *s₃*

A word is defined as a space-separated token. A token at the beginning or end of *s₁* is considered space-separated. This is different from a Unicode word, which is a language unit based on either a set of word-boundary rules or dictionaries for several languages (Chinese, Japanese, and Thai). If *n* is *missing*, all occurrences are replaced.

Also see `regexm()`, `regexr()`, and `regexs()`.

```plaintext
subinword("this is the day","is","X",1) = "this X the day"
subinword("this is the hour","is","X",.) = "this X the hour"
subinword("this is this","th","X",.) = "this is this"
```

- **Domain s₁:** strings (to be substituted for)
- **Domain s₂:** strings (to be substituted from)
- **Domain s₃:** strings (to be substituted with)
- **Domain n:** integers ≥ 0 or *missing*
- **Range:** strings

substr(*s*, *n₁*, *n₂*)

Description: the substring of *s*, starting at *n₁*, for a length of *n₂*

substr() is intended for use with only plain ASCII characters and for use by programmers who want to extract a subset of bytes from a string. For those with plain ASCII text, *n₁* is the starting character, and *n₂* is the length of the string in characters. For programmers, substr() is technically a byte-based function. For plain ASCII characters, the two are equivalent but you can operate on byte values beyond that range. Note that any Unicode character beyond ASCII range (code point greater than 127) takes more than 1 byte in the UTF-8 encoding; for example, é takes 2 bytes.

To obtain substrings of Unicode strings, see usubstr().

If *n₁* < 0, *n₁* is interpreted as the distance from the end of the string; if *n₂* = . (missing), the remaining portion of the string is returned.

```plaintext
substr("abcdef",2,3) = "bcd"
substr("abcdef",-3,2) = "de"
substr("abcdef",2,.) = "bcdef"
substr("abcdef",-3,.) = "def"
substr("abcdef",2,0) = ""
substr("abcdef",15,2) = ""
```

- **Domain s:** strings
- **Domain n₁:** integers ≥ 1 and ≤ −1
- **Domain n₂:** integers ≥ 1
- **Range:** strings
usubstr(s, n_1, n_2)
Description: the Unicode substring of s, starting at n_1, for a length of n_2

If $n_1 < 0$, n_1 is interpreted as the distance from the last character of the s; if $n_2 = . (missing)$, the remaining portion of the Unicode string is returned.

usubstr("médiane",2,3) = "édi"
usubstr("médiane",-3,2) = "an"
usubstr("médiane",2,.) = "édiane"

Domain s: Unicode strings
Domain n_1: integers ≥ 1 and ≤ -1
Domain n_2: integers ≥ 1
Range: Unicode strings

udsubstr(s, n_1, n_2)
Description: the Unicode substring of s, starting at character n_1, for n_2 display columns

If $n_2 = . (missing)$, the remaining portion of the Unicode string is returned. If n_2 display columns from n_1 is in the middle of a Unicode character, the substring stops at the previous Unicode character.

udsubstr("médiane",2,3) = "édi"
udsubstr("中值",1,1) = ""
udsubstr("中值",1,2) = "中"

Domain s: Unicode strings
Domain n_1: integers ≥ 1
Domain n_2: integers ≥ 1
Range: Unicode strings

tobytes($s[^n]$)
Description: escaped decimal or hex digit strings of up to 200 bytes of s

The escaped decimal digit string is in the form of \dDDD. The escaped hex digit string is in the form of \xhh. If n is not specified or is 0, the decimal form is produced. Otherwise, the hex form is produced.

tobytes("abc") = "\d097\d098\d099"
tobytes("abc", 1) = "\x61\x62\x63"
tobytes("café") = "\d099\d097\d102\d195\d169"

Domain s: Unicode strings
Domain n: integers
Range: strings

uisdigit(s)
Description: 1 if the first Unicode character in s is a Unicode decimal digit; otherwise, 0

A Unicode decimal digit is a Unicode character with the character property Nd according to the Unicode standard. The function returns -1 if the string starts with an invalid UTF-8 sequence.

Domain s: Unicode strings
Range: integers
uisletter(s)
Description: 1 if the first Unicode character in s is a Unicode letter; otherwise, 0
A Unicode letter is a Unicode character with the character property L according to
the Unicode standard. The function returns -1 if the string starts with an invalid
UTF-8 sequence.
Domain s: Unicode strings
Range: integers

ustrcompare(s₁, s₂[, loc])
Description: compares two Unicode strings
The function returns -1, 1, or 0 if s₁ is less than, greater than, or equal to s₂. The
function may return a negative number other than -1 if an error happens. The
comparison is locale dependent. For example, z < ö in Swedish but ö < z in German.
If loc is not specified, the default locale is used. The comparison is diacritic and case
sensitive. If you need different behavior, for example, case-insensitive comparison,
you should use the extended comparison function ustrcompareex(). Unicode
string comparison compares Unicode strings in a language-sensitive manner. On
the other hand, the sort command compares strings in code-point (binary) order.
For example, uppercase “Z” (code-point value 90) comes before lowercase “a”
(code-point value 97) in code-point order but comes after “a” in any English
dictionary.

ustrcompare("z", "ö", "sv") = -1
ustrcompare("z", "ö", "de") = 1
Domain s₁: Unicode strings
Domain s₂: Unicode strings
Domain loc: Unicode strings
Range: integers

ustrcompareex(s₁, s₂, loc, st, case, cslv, norm, num, alt, fr)
Description: compares two Unicode strings
The function returns -1, 1, or 0 if s₁ is less than, greater than, or equal to s₂. The
function may return a negative number other than -1 if an error occurs. The
comparison is locale dependent. For example, z < ö in Swedish but ö < z in German. If loc is not specified, the default locale is used.
st controls the strength of the comparison. Possible values are 1 (primary), 2
(secondary), 3 (tertiary), 4 (quaternary), or 5 (identical). -1 means to use the
default value for the locale. Any other numbers are treated as tertiary. The primary
difference represents base letter differences; for example, letter “a” and letter “b”
have primary differences. The secondary difference represents diaritical differences
on the same base letter; for example, letters “a” and “ã” have secondary differences.
The tertiary difference represents case differences of the same base letter; for example,
letters “a” and “A” have tertiary differences. Quaternary strength is
useful to distinguish between Katakana and Hiragana for the JIS 4061 collation
standard. Identical strength is essentially the code-point order of the string, hence,
is rarely useful.

ustrcompareex("café","cafe","fr", 1, -1, -1, -1, -1, -1, -1) = 0
ustrcompareex("café","cafe","fr", 2, -1, -1, -1, -1, -1, -1) = 1
ustrcompareex("Café","café","fr", 3, -1, -1, -1, -1, -1, -1) = 1
case controls the uppercase and lowercase letter order. Possible values are 0 (use order specified in tertiary strength), 1 (uppercase first), or 2 (lowercase first). -1 means to use the default value for the locale. Any other values are treated as 0.

```c
ustrcompareex("Café", "café", "fr", -1, 1, -1, -1, -1, -1, -1) = -1
ustrcompareex("Café", "café", "fr", 1, 2, -1, -1, -1, -1, -1) = 1
```

cslv controls whether an extra case level between the secondary level and the tertiary level is generated. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. Any other values are treated as 0. Combining this setting to be “on” and the strength setting to be primary can achieve the effect of ignoring the diacritical differences but preserving the case differences. If the setting is “on”, the result is also affected by the case setting.

```c
ustrcompareex("café", "Cafe", "fr", 1, -1, 1, -1, -1, -1, -1) = -1
ustrcompareex("café", "Cafe", "fr", 1, 1, 1, -1, -1, -1, -1) = 1
```

norm controls whether the normalization check and normalizations are performed. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. Any other values are treated as 0. Most languages do not require normalization for comparison. Normalization is needed in languages that use multiple combining characters such as Arabic, ancient Greek, or Hebrew.

```c
ustrcompareex("100", "20","en", -1, -1, -1, 0, -1, -1) = -1
ustrcompareex("100", "20","en", 1, -1, -1, -1, -1, -1) = 1
```

alt controls how spaces and punctuation characters are handled. Possible values are 0 (use primary strength) or 1 (alternative handling). Any other values are treated as 0. If the setting is 1 (alternative handling), “onsite”, “on-site”, and “on site” are considered equals.

```c
ustrcompareex("onsite", "on-site","en", -1, -1, -1, -1, 1, -1) = 0
ustrcompareex("onsite", "on site","en", -1, -1, -1, -1, 1, -1, -1) = 1
```

fr controls the direction of the secondary strength. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. All other values are treated as “off”. If the setting is “on”, the diacritical letters are sorted backward. Note that the setting is “on” by default only for Canadian French (locale fr_CA).

```c
ustrcompareex("coté", "côte","fr_CA",-1,-1,-1,-1,-1,0) = -1
ustrcompareex("coté", "côte","fr_CA",-1,-1,-1,-1,-1,1) = 1
ustrcompareex("coté", "côte","fr_CA",-1,-1,-1,-1,-1,-1) = 1
ustrcompareex("coté", "côte","fr",-1,-1,-1,-1,-1,-1) = 1
```
Domain s_1: Unicode strings
Domain s_2: Unicode strings
Domain loc: Unicode strings
Domain st: integers
Domain $case$: integers
Domain $cslv$: integers
Domain $norm$: integers
Domain alt: integers
Domain fr: integers
Range: integers

ustrfix($s[,rep]$)
Description: replaces each invalid UTF-8 sequence with a Unicode character

In the one-argument case, the Unicode replacement character \ufffd is used. In
the two-argument case, the first Unicode character of rep is used. If rep starts
with an invalid UTF-8 sequence, then Unicode replacement character \ufffd is
used. Note that an invalid UTF-8 sequence can contain one byte or multiple bytes.

ustrfix(char(200)) = ustrunescape("\ufffd")
ustrfix("ab"+char(200)+"cdé", ") = "abcédé"

Domain s: Unicode strings
Domain rep: Unicode character
Range: Unicode strings

ustrfrom($s,enc,mode$)
Description: converts the string s in encoding enc to a UTF-8 encoded Unicode string

$mode$ controls how invalid byte sequences in s are handled. The possible values
are 1, which substitutes an invalid byte sequence with a Unicode replacement
character \ufffd; 2, which skips any invalid byte sequences; 3, which stops at
the first invalid byte sequence and returns an empty string; or 4, which replaces
any byte in an invalid sequence with an escaped hex digit sequence %Xhh. Any
other values are treated as 1. A good use of value 4 is to check what invalid
bytes a Unicode string ust contains by examining the result of ustrfrom(ust,
"utf-8", 4).

Also see ustrto().

ustrfrom("caf"+char(233), "latin1", 1) = "café"
ustrfrom("caf"+char(233), "utf-8", 1) =
 "caf"+ustrunescape("\ufffd")
ustrfrom("caf"+char(233), "utf-8", 2) = "caf"
ustrfrom("caf"+char(233), "utf-8", 3) = ""
ustrfrom("caf"+char(233), "utf-8", 4) = "caf%XE9"

Domain s: strings in encoding enc
Domain enc: Unicode strings
Domain $mode$: integers
Range: Unicode strings
ustrinvalidcnt(s)
Description: the number of invalid UTF-8 sequences in s

An invalid UTF-8 sequence may contain one byte or multiple bytes.

ustrinvalidcnt("médiade") = 0
ustrinvalidcnt("médiade"+char(229)) = 1
ustrinvalidcnt("médiade"+char(229)+char(174)) = 1
ustrinvalidcnt("médiade"+char(174)+char(158)) = 2

Domain s: Unicode strings
Range: integers

ustrleft(s,n)
Description: the first n Unicode characters of the Unicode string s

An invalid UTF-8 sequence is replaced with a Unicode replacement character \ufffd.

ustrleft("Экспериментальные",3) = "Экс"
ustrleft("Экспериментальные",5) = "Эксеп"

Domain s: Unicode strings
Domain n: integers
Range: Unicode strings

ustrnormalize(s,norm)
Description: normalizes Unicode string s to one of the five normalization forms specified by norm

The normalization forms are nfc, nfd, nfkc, nfkd, or nfkcc. The function returns an empty string for any other value of norm. Unicode normalization removes the Unicode string differences caused by Unicode character equivalence. nfc specifies Normalization Form C, which normalizes decomposed Unicode code points to a composited form. nfd specifies Normalization Form D, which normalizes composited Unicode code points to a decomposed form. nfc and nfd produce canonical equivalent form. nfkc and nfkd are similar to nfc and nfd but produce compatibility equivalent forms. nfkcc specifies nfkc with casefolding. This normalization and casefolding implement the Unicode Character Database.

In the Unicode standard, both “i” (\u0069 followed by a diaeresis \u0308) and the composite character \u00ef represent “i” with 2 dots as in “naïve”. Hence, the code-point sequence \u0069\u0308 and the code point \u00ef are considered Unicode equivalent. According to the Unicode standard, they should be treated as the same single character in Unicode string operations, such as in display, comparison, and selection. However, Stata does not support multiple code-point characters; each code point is considered a separate Unicode character. Hence, \u0069\u0308 is displayed as two characters in the Results window. ustrnormalize() can be used with "nfc" to normalize \u0069\u0308 to the canonical equivalent composited code point \u00ef.

ustrnormalize(ustrunescape("\u0069\u0308"), "nfc") = "ï"
The decomposed form nfd can be used to removed diacritical marks from base letters. First, normalize the Unicode string to canonical decomposed form, and then call ustrto() with mode skip to skip all non-ASCII characters.

Also see ustrfrom().

ustrto(ustrnormalize("café", "nfd"), "ascii", 2) = "cafe"

Domain s: Unicode strings
Domain $norm$: Unicode strings
Range: Unicode strings

ustrright(s, n)

Description: the last n Unicode characters of the Unicode string s

An invalid UTF-8 sequence is replaced with a Unicode replacement character �.

ustrright("Экспериментальная",3) = "ные"
ustrright("Экспериментальная",5) = "льные"

Domain s: Unicode strings
Domain n: integers
Range: Unicode strings

ustrsortkey(s, loc)

Description: generates a null-terminated byte array that can be used by the sort command to produce the same order as ustrcompare()

The function may return an empty array if an error occurs. The result is locale dependent. If loc is not specified, the default locale is used. The result is also diacritic and case sensitive. If you need different behavior, for example, case-insensitive results, you should use the extended function ustrsortkeyex(). See [U] 12.4.2.5 Sorting strings containing Unicode characters for details and examples.

Domain s: Unicode strings
Domain loc: Unicode strings
Range: null-terminated byte array
ustrsortkeyex(s, loc, case, cslv, norm, num, alt, fr)

Description: generates a null-terminated byte array that can be used by the sort command to produce the same order as ustrcompare().

The function may return an empty array if an error occurs. The result is locale dependent. If loc is not specified, the default locale is used. See [U] 12.4.2.5 Sorting strings containing Unicode characters for details and examples.

The function controls the strength of the comparison. Possible values are 1 (primary), 2 (secondary), 3 (tertiary), 4 (quaternary), or 5 (identical). -1 means to use the default value for the locale. Any other numbers are treated as tertiary. The primary difference represents base letter differences; for example, letter “a” and letter “b” have primary differences. The secondary difference represents diacritical differences on the same base letter; for example, letters “a” and “ä” have secondary differences. The tertiary difference represents case differences of the same base letters; for example, letters “a” and “A” have tertiary differences. Quaternary strength is useful to distinguish between Katakana and Hiragana for the JIS 4061 collation standard. Identical strength is essentially the code-point order of the string and, hence, is rarely useful.

The function controls the uppercase and lowercase letter order. Possible values are 0 (use order specified in tertiary strength), 1 (uppercase first), or 2 (lowercase first). -1 means to use the default value for the locale. Any other values are treated as 0.

The function controls if an extra case level between the secondary level and the tertiary level is generated. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. Any other values are treated as 0. Combining this setting to be “on” and the strength setting to be primary can achieve the effect of ignoring the diacritical differences but preserving the case differences. If the setting is “on”, the result is also affected by the case setting.

The function controls whether the normalization check and normalizations are performed. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. Any other values are treated as 0. Most languages do not require normalization for comparison. Normalization is needed in languages that use multiple combining characters such as Arabic, ancient Greek, or Hebrew.

The function controls how contiguous digit substrings are sorted. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. Any other values are treated as 0. If the setting is “on”, substrings consisting of digits are sorted based on the numeric value. For example, “100” is after “20” instead of before it. Note that the digit substring is limited to 254 digits, and plus/minus signs, decimals, or exponents are not supported.
alt controls how spaces and punctuation characters are handled. Possible values are 0 (use primary strength) or 1 (alternative handling). Any other values are treated as 0. If the setting is 1 (alternative handling), “onsite”, “on-site”, and “on site” are considered equals.

fr controls the direction of the secondary strength. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. All other values are treated as “off”. If the setting is “on”, the diacritical letters are sorted backward. Note that the setting is “on” by default only for Canadian French (locale fr_CA).

ustrto(s, enc, mode)
Description: converts the Unicode string s in UTF-8 encoding to a string in encoding enc
See [D] unicode encoding for details on available encodings. Any invalid sequence in s is replaced with a Unicode replacement character \ufffd. mode controls how unsupported Unicode characters in the encoding enc are handled. The possible values are 1, which substitutes any unsupported characters with the enc’s substitution strings (the substitution character for both ascii and latin1 is char(26)); 2, which skips any unsupported characters; 3, which stops at the first unsupported character and returns an empty string; or 4, which replaces any unsupported character with an escaped hex digit sequence \uhhhh or \Uhhhhhhhh. The hex digit sequence contains either 4 or 8 hex digits, depending if the Unicode character’s code-point value is less than or greater than \uffff. Any other values are treated as 1.

ustrto("caf´ e", "ascii", 1) = "caf"+char(26)
ustrto("caf´ e", "ascii", 2) = "caf"
ustrto("caf´ e", "ascii", 3) = ""
ustrto("caf´ e", "ascii", 4) = "caf\u00E9"

ustrto() can be used to removed diacritical marks from base letters. First, normalize the Unicode string to NFD form using ustrnormalize(), and then call ustrto() with value 2 to skip all non-ASCII characters.

Also see ustrfrom().

ustrto(ustrnormalize("caf´ e", "nfd"), "ascii", 2) = "cafe"
ustrtohex(s[, n])
Description: escaped hex digit string of s up to 200 Unicode characters

The escaped hex digit string is in the form of \uhhhh for code points less than \uffff or \Uhhhhhhhh for code points greater than \uffff. The function starts at the nth Unicode character of s if n is specified and larger than 0. Any invalid UTF-8 sequence is replaced with a Unicode replacement character \ufffd. Note that the null terminator char(0) is a valid Unicode character. Function ustrunescape() can be applied on the result to get back the original Unicode string s if s does not contain any invalid UTF-8 sequences.

Also see ustrunescape().

ustrtohex("нулю") = "
ustrtohex("егр", 2) = "
ustrtohex("i"+char(200)+char(0)+"s") = "

Domain s: Unicode strings
Domain n: integers ≥ 1
Range: strings

ustrunescape(s)
Description: the Unicode string corresponding to the escaped sequences of s

The following escape sequences are recognized: 4 hex digit form \uhhhh; 8 hex digit form \Uhhhhhhhh; 1–2 hex digit form \xhh; and 1–3 octal digit form \ooo, where h is [0–9A–F] and o is [0–7]. The standard ANSI C escapes \a, \b, \t, \n, \v, \f, \r, \e, \", \', \? \" are recognized as well. The function returns an empty string if an escape sequence is badly formed. Note that the 8 hex digit form \Uhhhhhhhh begins with a capital letter “U”.

Also see ustrtohex().

ustrunescape("уО43д\у0443\у043б\у044e") = "егр"

Domain s: strings of escaped hex values
Range: Unicode strings

word(s,n)
Description: the nth word in s; missing (" ") if n is missing

Positive numbers count words from the beginning of s, and negative numbers count words from the end of s. (1 is the first word in s, and -1 is the last word in s.) A word is a set of characters that start and terminate with spaces. This is different from a Unicode word, which is a language unit based on either a set of word-boundary rules or dictionaries for several languages (Chinese, Japanese, and Thai).

Domain s: strings
Domain n: integers
Range: strings
ustrword(s,n[,loc])
Description: the nth Unicode word in the Unicode string s

Positive n counts Unicode words from the beginning of s, and negative n counts Unicode words from the end of s. For examples, n equal to 1 returns the first word in s, and n equal to -1 returns the last word in s. If loc is not specified, the default locale is used. A Unicode word is different from a Stata word produced by the word() function. A Stata word is a space-separated token. A Unicode word is a language unit based on either a set of word-boundary rules or dictionaries for some languages (Chinese, Japanese, and Thai). The function returns missing ('"') if n is greater than cnt or less than -cnt, where cnt is the number of words s contains. cnt can be obtained from ustrwordcount(). The function also returns missing ('"') if an error occurs.

ustrword("Parlez-vous français", 1, "fr") = "Parlez"
ustrword("Parlez-vous français", 2, "fr") = "-"
ustrword("Parlez-vous français",-1, "fr") = "français"
ustrword("Parlez-vous français",-2, "fr") = "vous"

Domain s: Unicode strings
Domain loc: Unicode strings
Domain n: integers
Range: Unicode strings

wordbreaklocale(loc,type)
Description: the most closely related locale supported by ICU from loc if type is 1, the actual locale where the word-boundary analysis data come from if type is 2; or an empty string is returned for any other type

wordbreaklocale("en_us_texas", 1) = en_US
wordbreaklocale("en_us_texas", 2) = root

Domain loc: strings of locale name
Domain type: integers
Range: strings

wordcount(s)
Description: the number of words in s

A word is a set of characters that starts and terminates with spaces, starts with the beginning of the string, or terminates with the end of the string. This is different from a Unicode word, which is a language unit based on either a set of word-boundary rules or dictionaries for several languages (Chinese, Japanese, and Thai).

Domain s: strings
Range: nonnegative integers 0, 1, 2, ...
ustrwordcount(s[,loc])

Description: the number of nonempty Unicode words in the Unicode string s

An empty Unicode word is a Unicode word consisting of only Unicode whitespace characters. If loc is not specified, the default locale is used. A Unicode word is different from a Stata word produced by the word() function. A Stata word is a space-separated token. A Unicode word is a language unit based on either a set of word-boundary rules or dictionaries for some languages (Chinese, Japanese, and Thai). The function may return a negative number if an error occurs.

ustrwordcount("Parlez-vous français", "fr") = 4

Domain s: Unicode strings
Domain loc: Unicode strings
Range: Unicode strings

References

Also see

[FN] Functions by category
[D] egen — Extensions to generate
[D] generate — Create or change contents of variable
[M-4] string — String manipulation functions
[U] 12.4.2 Handling Unicode strings
[U] 13.2.2 String operators
[U] 13.3 Functions
Trigonometric functions

Contents

acos(x)
Description: the radian value of the arccosine of x
Domain: -1 to 1
Range: 0 to π

acosh(x)
Description: the inverse hyperbolic cosine of x
acosh(x) = ln(x + √x^2 - 1)
Domain: 1 to 8.9e+307
Range: 0 to 709.77

asin(x)
Description: the radian value of the arcsine of x
Domain: -1 to 1
Range: -π/2 to π/2

asinh(x)
Description: the inverse hyperbolic sine of x
asinh(x) = ln(x + √x^2 + 1)
Domain: -8.9e+307 to 8.9e+307
Range: -709.77 to 709.77

atan(x)
Description: the radian value of the arctangent of x
Domain: all real numbers
Range: -π/2 to π/2

atan2(y, x)
Description: the radian value of the arctangent of y/x, where the signs of the parameters y and x are used to determine the quadrant of the answer

tanh(x)
Description: the hyperbolic tangent of x
Domain: all real numbers
Range: -1 to 1

cos(x)
Description: the cosine of x, where x is in radians
Domain: all real numbers
Range: -1 to 1

cosh(x)
Description: the hyperbolic cosine of x
Domain: all real numbers
Range: all real numbers

sin(x)
Description: the sine of x, where x is in radians
Domain: all real numbers
Range: -1 to 1

sinh(x)
Description: the hyperbolic sine of x
Domain: all real numbers
Range: all real numbers

tan(x)
Description: the tangent of x, where x is in radians
Domain: all real numbers except x = nπ, where n is an integer
Range: all real numbers
atan(x)
Description: the radian value of the arctangent of x
Domain: $-8e+307$ to $8e+307$
Range: $-\pi/2$ to $\pi/2$

atan2(y, x)
Description: the radian value of the arctangent of y/x, where the signs of the parameters y and x are used to determine the quadrant of the answer
Domain y: $-8e+307$ to $8e+307$
Domain x: $-8e+307$ to $8e+307$
Range: $-\pi$ to π

atanh(x)
Description: the inverse hyperbolic tangent of x
\[
\text{atanh}(x) = \frac{1}{2}\left\{\ln(1 + x) - \ln(1 - x)\right\}
\]
Domain: -1 to 1
Range: $-8e+307$ to $8e+307$

cos(x)
Description: the cosine of x, where x is in radians
Domain: $-1e+18$ to $1e+18$
Range: -1 to 1

cosh(x)
Description: the hyperbolic cosine of x
\[
\cosh(x) = \frac{\exp(x) + \exp(-x)}{2}
\]
Domain: -709 to 709
Range: 1 to $4.11e+307$

sin(x)
Description: the sine of x, where x is in radians
Domain: $-1e+18$ to $1e+18$
Range: -1 to 1

sinh(x)
Description: the hyperbolic sine of x
\[
\sinh(x) = \frac{\exp(x) - \exp(-x)}{2}
\]
Domain: -709 to 709
Range: $-4.11e+307$ to $4.11e+307$

tan(x)
Description: the tangent of x, where x is in radians
Domain: $-1e+18$ to $1e+18$
Range: $-1e+17$ to $1e+17$ or missing

tanh(x)
Description: the hyperbolic tangent of x
\[
\tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}
\]
Domain: $-8e+307$ to $8e+307$
Range: -1 to 1 or missing
Technical note

The trigonometric functions are defined in terms of radians. There are 2π radians in a circle. If you prefer to think in terms of degrees, because there are also 360 degrees in a circle, you may convert degrees into radians by using the formula $r = d\pi/180$, where d represents degrees and r represents radians. Stata includes the built-in constant `pi`, equal to π to machine precision. Thus, to calculate the sine of theta, where theta is measured in degrees, you could type

\[\sin(\text{theta} \times \text{pi}/180) \]

atan() similarly returns radians, not degrees. The arccotangent can be obtained as

\[\text{acot}(x) = \text{pi}/2 - \text{atan}(x) \]

Reference

Also see

[FN] Functions by category
[D] egen — Extensions to generate
[D] generate — Create or change contents of variable
[M-5] sin() — Trigonometric and hyperbolic functions
[U] 13.3 Functions
Subject and author index

See the combined subject index and the combined author index in the Glossary and Index.