
The Workflow of Data Analysis

Using Stata

J. SCOTT LONG
Departments of Sociology and Statistics
Indiana University–Bloomington

A Stata Press Publication
StataCorp LP
College Station, Texas

Copyright c© 2009 by StataCorp LP
All rights reserved. First edition 2009

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in LATEX2ε

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN-10: 1-59718-047-5
ISBN-13: 978-1-59718-047-4

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any
form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without
the prior written permission of StataCorp LP.

Stata is a registered trademark of StataCorp LP. LATEX2ε is a trademark of the American
Mathematical Society.

Contents

List of tables xxi

List of figures xxiii

List of examples xxv

Preface xxix

A word about fonts, files, commands, and examples xxxiii

1 Introduction 1

1.1 Replication: The guiding principle for workflow 2

1.2 Steps in the workflow . 3

1.2.1 Cleaning data . 4

1.2.2 Running analysis . 4

1.2.3 Presenting results . 4

1.2.4 Protecting files . 4

1.3 Tasks within each step . 5

1.3.1 Planning . 5

1.3.2 Organization . 5

1.3.3 Documentation . 5

1.3.4 Execution . 6

1.4 Criteria for choosing a workflow . 6

1.4.1 Accuracy . 6

1.4.2 Efficiency . 6

1.4.3 Simplicity . 7

1.4.4 Standardization . 7

1.4.5 Automation . 7

1.4.6 Usability . 7

viii Contents

1.4.7 Scalability . 8

1.5 Changing your workflow . 8

1.6 How the book is organized . 8

2 Planning, organizing, and documenting 11

2.1 The cycle of data analysis . 13

2.2 Planning . 14

2.3 Organization . 18

2.3.1 Principles for organization 18

2.3.2 Organizing files and directories 19

2.3.3 Creating your directory structure 21

A directory structure for a small project 21

A directory structure for a large, one-person project 23

Directories for collaborative projects 23

Special-purpose directories 25

Remembering what directories contain 27

Planning your directory structure 29

Naming files . 30

Batch files . 30

2.3.4 Moving into a new directory structure (advanced topic) . . 31

Example of moving into a new directory structure 31

2.4 Documentation . 34

2.4.1 What should you document? 36

2.4.2 Levels of documentation . 37

2.4.3 Suggestions for writing documentation 38

Evaluating your documentation 39

2.4.4 The research log . 39

A sample page from a research log 40

A template for research logs 42

2.4.5 Codebooks . 43

A codebook based on the survey instrument 43

Contents ix

2.4.6 Dataset documentation . 44

2.5 Conclusions . 45

3 Writing and debugging do-files 47

3.1 Three ways to execute commands 47

3.1.1 The Command window . 48

3.1.2 Dialog boxes . 49

3.1.3 Do-files . 49

3.2 Writing effective do-files . 50

3.2.1 Making do-files robust . 51

Make do-files self-contained 51

Use version control . 53

Exclude directory information 53

Include seeds for random numbers 55

3.2.2 Making do-files legible . 55

Use lots of comments . 56

Use alignment and indentation 57

Use short lines . 58

Limit your abbreviations . 61

Be consistent . 63

3.2.3 Templates for do-files . 63

Commands that belong in every do-file 63

A template for simple do-files 66

A more complex do-file template 66

3.3 Debugging do-files . 68

3.3.1 Simple errors and how to fix them 68

Log file is open . 68

Log file already exists . 68

Incorrect command name 69

Incorrect variable name . 69

Incorrect option . 70

x Contents

Missing comma before options 70

3.3.2 Steps for resolving errors . 70

Step 1: Update Stata and user-written programs 70

Step 2: Start with a clean slate 71

Step 3: Try other data . 72

Step 4: Assume everything could be wrong 72

Step 5: Run the program in steps 72

Step 6: Exclude parts of the do-file 74

Step 7: Starting over . 74

Step 8: Sometimes it is not your mistake 75

3.3.3 Example 1: Debugging a subtle syntax error 75

3.3.4 Example 2: Debugging unanticipated results 77

3.3.5 Advanced methods for debugging 81

3.4 How to get help . 82

3.5 Conclusions . 82

4 Automating your work 83

4.1 Macros . 83

4.1.1 Local and global macros . 84

Local macros . 84

Global macros . 85

Using double quotes when defining macros 85

Creating long strings . 85

4.1.2 Specifying groups of variables and nested models 86

4.1.3 Setting options with locals 88

4.2 Information returned by Stata commands 90

Using returned results with local macros 92

4.3 Loops: foreach and forvalues . 92

The foreach command . 94

The forvalues command . 95

Contents xi

4.3.1 Ways to use loops . 95

Loop example 1: Listing variable and value labels 96

Loop example 2: Creating interaction variables 97

Loop example 3: Fitting models with alternative mea-
sures of education 98

Loop example 4: Recoding multiple variables the same way 98

Loop example 5: Creating a macro that holds accumu-
lated information 99

Loop example 6: Retrieving information returned by Stata . 100

4.3.2 Counters in loops . 101

Using loops to save results to a matrix 102

4.3.3 Nested loops . 104

4.3.4 Debugging loops . 105

4.4 The include command . 106

4.4.1 Specifying the analysis sample with an include file 107

4.4.2 Recoding data using include files 107

4.4.3 Caution when using include files 109

4.5 Ado-files . 110

4.5.1 A simple program to change directories 111

4.5.2 Loading and deleting ado-files 112

4.5.3 Listing variable names and labels 113

4.5.4 A general program to change your working directory 117

4.5.5 Words of caution . 118

4.6 Help files . 119

4.6.1 nmlabel.hlp . 119

4.6.2 help me . 122

4.7 Conclusions . 123

5 Names, notes, and labels 125

5.1 Posting files . 125

5.2 The dual workflow of data management and statistical analysis . . . 127

5.3 Names, notes, and labels . 129

xii Contents

5.4 Naming do-files . 129

5.4.1 Naming do-files to re-create datasets 130

5.4.2 Naming do-files to reproduce statistical analysis 130

5.4.3 Using master do-files . 131

Master log files . 133

5.4.4 A template for naming do-files 134

Using subdirectories for complex analyses 135

5.5 Naming and internally documenting datasets 136

Never name it final! . 137

5.5.1 One time only and temporary datasets 137

5.5.2 Datasets for larger projects 138

5.5.3 Labels and notes for datasets 138

5.5.4 The datasignature command 139

A workflow using the datasignature command 140

Changes datasignature does not detect 141

5.6 Naming variables . 143

5.6.1 The fundamental principle for creating and naming variables 143

5.6.2 Systems for naming variables 144

Sequential naming systems 145

Source naming systems . 145

Mnemonic naming systems 146

5.6.3 Planning names . 146

5.6.4 Principles for selecting names 147

Anticipate looking for variables 147

Use simple, unambiguous names 148

Try names before you decide 151

5.7 Labeling variables . 151

5.7.1 Listing variable labels and other information 151

Changing the order of variables in your dataset 155

5.7.2 Syntax for label variable . 155

Contents xiii

5.7.3 Principles for variable labels 156

Beware of truncation . 156

Test labels before you post the file 157

5.7.4 Temporarily changing variable labels 157

5.7.5 Creating variable labels that include the variable name . . . 158

5.8 Adding notes to variables . 160

5.8.1 Commands for working with notes 161

Listing notes . 161

Removing notes . 162

Searching notes . 162

5.8.2 Using macros and loops with notes 162

5.9 Value labels . 163

5.9.1 Creating value labels is a two-step process 164

Step 1: Defining labels . 164

Step 2: Assigning labels . 164

Why a two-step system? . 164

Removing labels . 165

5.9.2 Principles for constructing value labels 165

1) Keep labels short . 165

2) Include the category number 166

3) Avoid special characters 168

4) Keeping track of where labels are used 169

5.9.3 Cleaning value labels . 170

5.9.4 Consistent value labels for missing values 171

5.9.5 Using loops when assigning value labels 171

5.10 Using multiple languages . 173

5.10.1 Using label language for different written languages 174

5.10.2 Using label language for short and long labels 174

5.11 A workflow for names and labels . 176

Step 1: Plan the changes . 176

xiv Contents

Step 2: Archive, clone, and rename 177

Step 3: Revise variable labels 177

Step 4: Revise value labels 177

Step 5: Verify the changes 178

5.11.1 Step 1: Check the source data 178

Step 1a: List the current names and labels 178

Step 1b: Try the current names and labels 181

5.11.2 Step 2: Create clones and rename variables 182

Step 2a: Create clones . 183

Step 2b: Create rename commands 183

Step 2c: Rename variables 184

5.11.3 Step 3: Revise variable labels 185

Step 3a: Create variable-label commands 185

Step 3b: Revise variable labels 186

5.11.4 Step 4: Revise value labels 187

Step 4a: List the current labels 188

Step 4b: Create label define commands to edit 189

Step 4c: Revise labels and add them to dataset 193

5.11.5 Step 5: Check the new names and labels 194

5.12 Conclusions . 195

6 Cleaning your data 197

6.1 Importing data . 198

6.1.1 Data formats . 198

ASCII data formats . 198

Binary-data formats . 200

6.1.2 Ways to import data . 201

Stata commands to import data 201

Using other statistical packages to export data 203

Using a data conversion program 203

Contents xv

6.1.3 Verifying data conversion . 203

Converting the ISSP 2002 data from Russia 204

6.2 Verifying variables . 210

6.2.1 Values review . 211

Values review of data about the scientific career 212

Values review of data on family values 215

6.2.2 Substantive review . 216

What does time to degree measure? 216

Examining high-frequency values 218

Links among variables . 220

Changes in survey questions 225

6.2.3 Missing-data review . 225

Comparisons and missing values 225

Creating indicators of whether cases are missing 228

Using extended missing values 228

Verifying and expanding missing-data codes 229

Using include files . 236

6.2.4 Internal consistency review 238

Consistency in data on the scientific career 238

6.2.5 Principles for fixing data inconsistencies 241

6.3 Creating variables for analysis . 241

6.3.1 Principles for creating new variables 242

New variables get new names 242

Verify that new variables are correct 243

Document new variables . 244

Keep the source variables 244

6.3.2 Core commands for creating variables 244

The generate command . 245

The clonevar command . 245

The replace command . 246

xvi Contents

6.3.3 Creating variables with missing values 247

6.3.4 Additional commands for creating variables 249

The recode command . 249

The egen command . 250

The tabulate, generate() command 252

6.3.5 Labeling variables created by Stata 253

6.3.6 Verifying that variables are correct 254

Checking the code . 255

Listing variables . 255

Plotting continuous variables 256

Tabulating variables . 258

Constructing variables multiple ways 259

6.4 Saving datasets . 260

6.4.1 Selecting observations . 261

Deleting cases versus creating selection variables 261

6.4.2 Dropping variables . 262

Selecting variables for the ISSP 2002 Russian data 263

6.4.3 Ordering variables . 263

6.4.4 Internal documentation . 264

6.4.5 Compressing variables . 264

6.4.6 Running diagnostics . 265

The codebook, problems command 265

Checking for unique ID variables 267

6.4.7 Adding a data signature . 269

6.4.8 Saving the file . 270

6.4.9 After a file is saved . 271

6.5 Extended example of preparing data for analysis 271

Creating control variables 271

Creating binary indicators of positive attitudes 274

Creating four-category scales of positive attitudes 277

Contents xvii

6.6 Merging files . 279

6.6.1 Match-merging . 280

Sorting the ID variable . 281

6.6.2 One-to-one merging . 281

Combining unrelated datasets 281

6.6.3 Forgetting to match-merge 283

6.7 Conclusions . 285

7 Analyzing data and presenting results 287

7.1 Planning and organizing statistical analysis 287

7.1.1 Planning in the large . 288

7.1.2 Planning in the middle . 289

7.1.3 Planning in the small . 291

7.2 Organizing do-files . 291

7.2.1 Using master do-files . 292

7.2.2 What belongs in your do-file? 294

7.3 Documentation for statistical analysis 295

7.3.1 The research log and comments in do-files 295

7.3.2 Documenting the provenance of results 296

Captions on graphs . 298

7.4 Analyzing data using automation . 298

7.4.1 Locals to define sets of variables 299

7.4.2 Loops for repeated analyses 300

Computing t tests using loops 300

Loops for alternative model specifications 302

7.4.3 Matrices to collect and print results 303

Collecting results of t tests 303

Saving results from nested regressions 306

Saving results from different transformations of articles . . . 308

7.4.4 Creating a graph from a matrix 310

7.4.5 Include files to load data and select your sample 311

xviii Contents

7.5 Baseline statistics . 312

7.6 Replication . 313

7.6.1 Lost or forgotten files . 313

7.6.2 Software and version control 314

7.6.3 Unknown seed for random numbers 314

Bootstrap standard errors 314

Letting Stata set the seed 315

Training and confirmation samples 316

7.6.4 Using a global that is not in your do-file 318

7.7 Presenting results . 318

7.7.1 Creating tables . 319

Using spreadsheets . 319

Regression tables with esttab 321

7.7.2 Creating graphs . 323

Colors, black, and white . 324

Font size . 326

7.7.3 Tips for papers and presentations 326

Papers . 326

Presentations . 327

7.8 A project checklist . 328

7.9 Conclusions . 328

8 Protecting your files 331

8.1 Levels of protection and types of files 332

8.2 Causes of data loss and issues in recovering a file 334

8.3 Murphy’s law and rules for copying files 337

8.4 A workflow for file protection . 338

Part 1: Mirroring active storage 338

Part 2: Offline backups . 340

8.5 Archival preservation . 343

8.6 Conclusions . 345

Contents xix

9 Conclusions 347

A How Stata works 349

A.1 How Stata works . 349

Stata directories . 350

The working directory . 350

A.2 Working on a network . 351

A.3 Customizing Stata . 353

A.3.1 Fonts and window locations 353

A.3.2 Commands to change preferences 353

Options that can be set permanently 353

Options that need to be set each session 355

A.3.3 profile.do . 355

Function keys . 356

A.4 Additional resources . 356

References 359

Author index 363

Subject index 365

Preface

This book is about methods that allow you to work efficiently and accurately when you
analyze data. Although it does not deal with specific statistical techniques, it discusses
the steps that you go through with any type of data analysis. These steps include
planning your work, documenting your activities, creating and verifying variables, gen-
erating and presenting statistical analyses, replicating findings, and archiving what you
have done. These combined issues are what I refer to as the workflow of data analysis.
A good workflow is essential for replication of your work, and replication is essential for
good science.

My decision to write this book grew out of my teaching, researching, consulting, and
collaborating. I increasingly saw that people were drowning in their data. With cheap
computing and storage, it is easier to create files and variables than it is to keep track
of them. As datasets have become more complicated, the process of managing data has
become more challenging. When consulting, much of my time was spent on issues of data
management and figuring out what had been done to generate a particular set of results.
In collaborative projects, I found that problems with workflow were multiplied. Another
motivation came from my work with Jeremy Freese on the package of Stata programs
known as SPost (Long and Freese 2006). These programs were downloaded more than
20,000 times last year, and we were contacted by hundreds of users. Responding to these
questions showed me how researchers from many disciplines organize their data analysis
and the ways in which this organization can break down. When helping someone with
what appeared to be a problem with an SPost command, I often discovered that the
problem was related to some aspect of the user’s workflow. When people asked if there
was something they could read about this, I had nothing to suggest.

A final impetus for writing the book came from Bruce Fraser’s Real World Camera
Raw with Adobe Photoshop CS2 (2005). A much touted advantage of digital photog-
raphy is that you can take a lot of pictures. The catch is keeping track of thousands of
pictures. Imaging experts have been aware of this issue for a long time and refer to it as
workflow—keeping track of your work as it flows through the many stages to the final
product. As the amount of time I spent looking for a particular picture became greater
than the time I spent taking pictures, it was clear that I needed to take Fraser’s advice
and develop a workflow for digital imaging. Fraser’s book got me thinking about data
analysis in terms of the concept of a workflow.

After years of gestation, the book took two years to write. When I started, I thought
my workflow was very good and that it was simply a matter of recording what I did. As
writing proceeded, I discovered gaps, inefficiencies, and inconsistencies in what I did.

xxx Preface

Sometimes these involved procedures that I knew were awkward, but where I never took
the time to find a better approach. Some problems were due to oversights where I had
not realized the consequences of the things I did or failed to do. In other instances,
I found that I used multiple approaches for the same task, never choosing one as the
best practice. Writing this book forced me to be more consistent and efficient. The
advantages of my improved workflow became clear when revising two papers that were
accepted for publication. The analyses for one paper were completed before I started
the workflow project, whereas the analyses for the other were completed after much
of the book had been drafted. I was pleased by how much easier it was to revise the
analyses in the paper that used the procedures from the book. Part of the improvement
was due to having better ways of doing things. Equally important was that I had a
consistent and documented way of doing things.

I have no illusions that the methods I recommend are the best or only way of doing
things. Indeed, I look forward to hearing from readers who have suggestions for a better
workflow. Your suggestions will be added to the book’s web site. However, the methods
I present work well and avoid many pitfalls. An important aspect of an efficient workflow
is to find one way of doing things and sticking with it. Uniform procedures allow you
to work faster when you initially do the work, and they help you to understand your
earlier work if you need to return to it at a later time. Uniformity also makes working
in research teams easier because collaborators can more easily follow what others have
done. There is a lot to be said in favor of having established procedures that are
documented and working with others who use the same procedures. I hope you find
that this book provides such procedures.

Although this book should be useful for anyone who analyzes data, it is written
within several constraints. First, Stata is the primary computing language because I
find Stata to be the best, general-purpose software for data management and statistical
analysis. Although nearly everything I do with Stata can be done in other software, I
do not include examples from other packages. Second, most examples use data from
the social sciences, because that is the field in which I work. The principles I discuss,
however, apply broadly to other fields. Finally, I work primarily in Windows. This
is not because I think Windows is a better operating system than Mac or Linux, but
because Windows is the primary operating system where I work. Just about everything
I suggest works equally well in other operating systems, and I have tried to note when
there are differences.

I want to thank the many people who commented on drafts or answered questions
about some aspect of workflow. I particularly thank Tait Runfeldt Medina, Curtis Child,
Nadine Reibling, and Shawna L. Rohrman whose detailed comments greatly improved
the book. I also thank Alan Acock, Myron Gutmann, Patricia McManus, Jack Thomas,
Leah VanWey, Rich Watson, Terry White, and Rich Williams for talking with me about
workflow. Many people at StataCorp helped in many ways. I particularly want to thank
Lisa Gilmore for producing the book, Jennifer Neve for editing, and Annette Fett for
designing the cover. David M. Drukker at StataCorp answered many of my questions.
His feedback made it a better book and his friendship made it more fun to write.

Preface xxxi

Some of the material in this book grew out of research funded by NIH Grant Number
R01TW006374 from the Fogarty International Center, the National Institute of Mental
Health, and the Office of Behavioral and Social Science Research to Indiana University–
Bloomington. Other work was supported by an anonymous foundation and The Bayer
Group. I gratefully acknowledge support provided by the College of Arts and Sciences
at Indiana University.

Without the unintended encouragement from my dear friend Fred, I would not have
started the book. Without the support of my dear wife Valerie, I would not have
completed it. Long overdue, this book is dedicated to her.

Bloomington, Indiana Scott Long
October 2008

3 Writing and debugging do-files

Before discussing how to use Stata for specific tasks in your workflow, I want to talk
about using Stata itself. Part of an effective workflow is taking advantage of the powerful
features of your software. Although you can learn the basics of Stata in an hour, to work
efficiently you need to understand some of its more advanced features. I am not talking
about specific commands for transforming data or fitting a model, but rather about the
interface of the program, the principles for writing do-files, and how to automate your
work. The time you spend learning these tools will quickly be recovered as you apply
these tools to your substantive work. Moreover, each of these tools contributes to the
accuracy, efficiency, and replicability of your work. This chapter discusses writing and
debugging do-files. Chapter 4 introduces powerful tools for automating your work. The
tools and techniques from chapters 3 and 4 are used and expanded upon in chapters 5–7
where different parts of the workflow of data analysis are discussed.

I begin the chapter reviewing three ways to execute commands: submit them from
the Command window, construct them with dialog boxes, or include them in do-files.
Each approach has its advantages, but I argue that the most effective way to work is
with do-files. Because the examples in the rest of the book depend on do-files, I discuss
in section 3.2 how to write more effective do-files that are easier to understand and
that will continue to work on different computers, in later versions of Stata, and after
you change the directories on your computer. Although these guidelines can prevent
many errors, sometimes your do-files will not work. Section 3.3 describes how to debug
do-files, and section 3.4 describes how to get help when the do-files still do not work.

I assume that you have used Stata before, although I do not assume that you are an
expert. If you have not used Stata, I encourage you to read [GS] Getting Started with
Stata and those sections of the [U] User’s Guide that seem most useful. Appendix A
discusses how the Stata program works, which directories it uses, how to use Stata on
a network, and ways to customize Stata. Even experienced users may find some useful
information there.

3.1 Three ways to execute commands

There are three ways to execute commands in Stata. You can submit commands inter-
actively from the command line. This is ideal for trying new things and exploring your
data. You can use dialog boxes to construct and submit commands, which is particu-
larly useful for finding the options you need when exploring new commands. You can
also run do-files, which are text files that contain Stata commands. Each method has

47

48 Chapter 3 Writing and debugging do-files

advantages, but I will argue that serious work requires do-files. Indeed, I only use the
other methods to help me write do-files.

3.1.1 The Command window

You can type one command at a time in the Command window. Type the command and
press Enter. When experimenting with how a command works or checking some aspect
of my data, I often use this method. I try a command, press Page Up to redisplay the
command in the Command window, revise it, press Enter to run it again, and so on. The
disadvantage of working interactively is that you cannot easily rerun your commands
at a later time.

Stata has a number of features that are very useful when working from the Command
window.

Review window

The commands you submit from the Command window are echoed to the Review
window. When you click on a command in the Review window, it is pasted into the
Command window where you can revise it and then submit it by pressing Enter. If you
double-click on a command in the Review window, it is sent to the Command window
and automatically executed.

Page up and page down

The Page Up and Page Down keys let you scroll through the commands in the Review
window. Pressing Page Up multiple times moves through multiple prior commands. Page

Down moves you forward to more recent commands. When a command appears in the
Command window, you can edit it and then rerun it by pressing Enter.

Copy and paste

You can highlight and copy text from the Command window or the Results window.
This information can be pasted into other applications, such as your text editor. This
allows you to debug a command interactively, then copy the corrected commands to
your do-file.

Variables window

The Variables window lists the variables in the current dataset. If you click on a
variable name in this window, the name is pasted into the Command window. This is
often the fastest way to construct a list of variable names. You can then copy the list
of names and paste it into your do-file.

3.1.3 Do-files 49

Logging with log and cmdlog

If you want to reproduce the results you obtain interactively, you should save your
session to a log file with the log using command. You can then edit the log file to
create a do-file to rerun the commands. Suppose that you start an interactive session
with the command

log using datacheck, replace text

After you are done with your session, you close the log file with log close to cre-
ate the file datacheck.log. To create a do-file that will produce the same results,
you can copy the log file to datacheck.do, remove the .’s in front of each command,
and delete the output. This is tedious but sometimes quite useful. An alternative
is to use cmdlog to save your interactive commands. For example, cmdlog using

datacheck.do, replace saves all commands from the Command window (but no out-
put) to a file named datacheck.do, which you can use to create your do-file. You close
a cmdlog with the cmdlog close command.

3.1.2 Dialog boxes

You can use dialog boxes to construct commands using point-and-click. You open a
dialog box from the menus in Stata by selecting the task you want to complete. For ex-
ample, to construct a scatterplot matrix, you select Graphics (Alt+G) > Scatterplot

matrix (s, Enter). Next you select options using your mouse. After you have selected
your options, click on the Submit button to run the command. The command you
submit is echoed to the Results window so that you can see how to type the command
from the Command window or with a do-file. If you press Page Up, the command gen-
erated by the dialog box is brought into the Command window where you can edit it,
copy it, or rerun it.

Although dialog boxes are easy to learn, they are slow to use. However, dialog boxes
are very efficient when you are looking for an option used by a complex command. I use
them frequently when creating graphs. I select the options I need, run the command by
clicking on the Submit button, and then copy the command from the Results window
to my do-file.

3.1.3 Do-files

Over 99% of the work I do in Stata uses do-files. Do-files are simply text files that
contain your commands. Here is a simple do-file named wf3-intro.do.

log using wf3-intro, replace text
use wf-lfp, clear
summarize lfp age
log close

50 Chapter 3 Writing and debugging do-files

This program loads data on labor-force participation and computes summary statistics
for two variables. If you have installed the Workflow package in your working directory,
you can run this do-file by typing the command do wf3-intro.do.1 The extension .do

is optional, so you could simply type do wf3-intro. After submitting the file, I obtain
these results:

log: e:\workflow\work\wf3-intro.log
log type: text
opened on: 3 Apr 2008, 05:27:01

. use wf-lfp, clear
(Workflow data on labor force participation \ 2008-04-02)

. summarize lfp age

Variable Obs Mean Std. Dev. Min Max

lfp 753 .5683931 .4956295 0 1
age 753 42.53785 8.072574 30 60

. log close
log: e:\workflow\work\wf3-intro.log

log type: text
closed on: 3 Apr 2008, 05:27:01

That is how simple it is to run a do-file. If you have avoided them in the past, this is
a good time to take an hour and learn how they work. That hour will save you many
hours later.

I use do-files for two major reasons. First, with do-files you have a record of the
commands you ran, so you can rerun them in the future to replicate your results or to
modify the program. Recall the research log on page 41 that documented a problem
with how a variable was created. If I had not been using do-files, I would have needed
to reconstruct weeks of work rather than changing a few lines of code and rerunning
the do-files in sequence. Second, with do-files, you can use the powerful features of
your text editor, including copying, pasting, global changes, and much more (see the
Workflow web site for information on text editors). The editor built into Stata can
be opened several ways: run the command doedit, select the Do-file Editor from the
Window menu of Stata, or click on the Do-file Editor icon. For details on the Stata
Do-file Editor, type help doedit, or see [R] doedit.

3.2 Writing effective do-files

The rest of the book assumes that you are using do-files to run commands, with the
exceptions of occasionally testing commands from the Command window or using dialog
boxes to track down options. In this section, I consider how to write do-files that are
robust and legible. Here is what I mean by these terms:

1. Appendix A explains the idea of a working directory. The Preface has information on installing
the Workflow package.

3.2.1 Making do-files robust 51

Robust do-files produce exactly the same result when run at a later time or
on another computer.

Legible do-files are documented and formatted so that it is easy to under-
stand what is being done.

Both criteria are important because they make it possible to replicate and correctly
interpret your results. As a bonus, robust and legible do-files are easier to write and
debug. To illustrate these characteristics of do-files, I use examples that contain basic
Stata commands. Although you might encounter a command that you have not seen
before, you should still be able to understand the general points I am making even if
you do not follow the specific details.

3.2.1 Making do-files robust

A do-file is robust if it produces exactly the same result when it is rerun on your
computer or run on a different computer. The key to writing robust do-files is to make
sure that results do not depend on something left in memory (e.g., from another do-file
or a command submitted from the Command window) or how your computer is set up
(e.g., the directory structure you use). To operationalize this standard, imagine that
after running a do-file you copy this file and all datasets used to a USB drive, insert the
USB drive in another computer, and run the do-file again without any changes. If you
cannot do this and get the same results, replication will be difficult or impossible. Here
are my suggestions for making your do-files robust.

Make do-files self-contained

Your do-file should not rely on something left in memory by a prior do-file or commands
run from the Command window. A do-file should not use a dataset unless it loads
the dataset itself. It should not compute a test of coefficients unless it estimates those
coefficients. And so on. To understand why this is important, consider a simple example.
Suppose that wf3-step1.do creates new variables and wf3-step2.do fits a model. The
first program loads a dataset and creates two variables indicating whether a family has
young children and whether a family has older children:

log using wf3-step1, replace text
use wf-lfp, clear
generate hask5 = (k5>0) & (k5<.)
label var hask5 "Has children less than 5 yrs old?"
generate hask618 = (k618>0) & (k618<.)
label var hask618 "Has children between 6 and 18 yrs old?"
log close

The program wf3-step2.do estimates the logit of lfp on seven variables, including the
two created by wf3-step1.do:

log using wf3-step2, replace
logit lfp hask5 hask618 age wc hc lwg inc, nolog
log close

52 Chapter 3 Writing and debugging do-files

If these programs are run one after the other, with no commands run in between,
everything works fine. What if the programs are not run in sequence? For example,
suppose that I run wf3-step1.do and then run other do-files or commands from the
Command window. Or I might later decide that the model should not include age, so I
modify wf3-step2.do and run it again without running wf3-step1.do first. Regardless
of the reason, if I run the second do-file without running wf3-step1.do first, I get the
following error:

. logit lfp hask5 hask618 age wc hc lwg inc, nolog
no variables defined
r(111);

The error occurs because the dataset is no longer in memory. I might change the
program so that the original dataset is loaded

log using wf3-step2, replace
use wf-lfp, clear
logit lfp hask5 hask618 age wc hc lwg inc, nolog
log close

Now the error is

. logit lfp hask5 hask618 age wc hc lwg inc, nolog
variable hask5 not found
r(111);

This error occurs because hask5 is not in the original dataset but was created by
wf3-step1.do.

To avoid this type of problem, I can modify the two programs to make them self-
contained. I change the first program so that it saves a dataset with the new variables
(file: wf3-step1-v2.do):

log using wf3-step1-v2, replace
use wf-lfp, clear
generate hask5 = (k5>0) & (k5<.)
label var hask5 "Has children less than 5 yrs old?"
generate hask618 = (k618>0) & (k618<.)
label var hask618 "Has children between 6 and 18 yrs old?"
save wf-lfp-v2, replace
log close

I change the second program so that it loads the dataset created by the first program
(file: wf3-step2-v2.do):

log using wf3-step2-v2, replace
use wf-lfp-v2, clear
logit lfp hask5 hask618 age wc hc lwg inc, nolog
log close

The do-file wf3-step2-v2.do still requires running wf3-step1-v2.do to create the new
dataset, but it does not require running wf3-step2-v2.do immediately after
wf3-step1-v2.do or even that it be run in the same Stata session.

3.2.1 Making do-files robust 53

There are a few exceptions of do-files that need to be run in sequence. For example,
if I am doing postestimation analysis of coefficients from a model that takes a long
time to fit (e.g., asmprobit), I do not want to refit the model repeatedly while I debug
the postestimation commands. I would use one do-file to fit the model and a second
do-file for postestimation analysis. The second do-file only works if the prior do-file was
run. To ensure that I remember that the programs need to be run in tandem, I add a
comment to the second do-file:

// Note: This do-file assumes that program1.do was run first.

After debugging the second program, I would combine the two do-files to create one
do-file that is self-contained.2

Use version control

If you run a do-file at a later time, perhaps to verify a result or to modify some part of
the program, you could be using a newer version of Stata. If you share a do-file with
a colleague, she might be using a different version of Stata. Sometimes new versions of
Stata change the way in which a statistic is computed, perhaps reflecting advances in
computational methods. When this occurs, the same commands can produce different
results in different versions of Stata. Newer versions of Stata might change the name of
a command (e.g., clear in Stata 9 was changed to clear all in Stata 10). The solution
is to include a version command in your do-file. For example, if your do-file includes
the command version 6 and you run the do-file in Stata 10, you will get exactly the
same answer that you would obtain in Stata 6. This is true even if Stata 10 computes
the particular statistic differently (e.g., the computations in some xt commands changed
between Stata 6 and Stata 10). On the other hand, if your do-file includes the command
version 10 and you try to run the program in Stata 8.2, you get an error:

. version 10
this is version 8.2 of Stata; it cannot run version 10.0 programs

You can purchase the latest version of Stata by visiting
http://www.stata.com.

r(9);

You could rerun the program after changing the version 10 command to version 8.2.
There is no guarantee that programs written for newer versions of Stata will work in
older versions.

Exclude directory information

I almost never specify a directory location in commands that read or write files. This
lets my do-files run even if the directory structure of the computer I am using changes.
For example, suppose that my do-file loads data with the command

2. With Stata 10, I might use the new estimates save command to save the estimates in the first
do-file and then load them at the start of the second do-file that does postestimation analysis. This
would allow each program to be self-contained, even when debugging the second program. For
details, see [R] estimates save.

54 Chapter 3 Writing and debugging do-files

use c:\data\wf-lfp, clear

Later, when I rerun the do-file on a computer where the dataset is stored in d:\data\,
I get an error:

. use c:\data\wf-lfp, clear
file c:\data\wf-lfp.dta not found
r(601);

To avoid such problems, I do not include a directory location. For example, to load
wf-lfp.dta, I use the command

use wf-lfp, clear

When no directory is specified, Stata looks in the working directory.

The working directory is the directory you are in when you launch Stata.3 In Win-
dows, you can determine your working directory by typing cd. For example,

. cd
e:\data

In Mac OS or Unix, you use the pwd command. For example, on a Mac:

. pwd

~:data

You can change your working directory with the cd command. For example, when
testing commands for this book, I used the e:\workflow\work directory. To make this
my working directory, I would type

cd e:\workflow\work

To change to the working directory used for the CWH project, I would type

cd e:\cwh\work

If the directory name includes blanks or special characters, you need to put the name
in quotes. For example,

cd "c:\Documents and Settings\jslong\Projects\workflow\work"

The advantage of not including directory locations in your do-file is that you can run
your do-files on other computers without any changes. Although it is tempting to say
that you will always keep your data in the same place (e.g., d:\data), this is unlikely
for several reasons.

1. If you change computers or add a new drive to your computer, the drive letters
might change.

3. Appendix A has a detailed discussion of the directories used by Stata.

3.2.2 Making do-files legible 55

2. If you keep data on external drives, including USB flash drives, the operating
system will not always assign the drive the same drive letter.

3. If you reorganize your files, the directory structure could change.

4. When you restore files from your archive, you might not remember what the
directory structure used to be.

If you share do-files with a collaborator or someone helping you debug your program,
they will probably have a different directory structure than yours. If you hardcode
the directory, the person you send the do-file to must either create the same direc-
tory structure or change your program to load data from a different directory. When
the collaborator sends you the corrected do-file, you will have to undo the directory
changes that were made, and so on. All things considered, I think that it is best prac-
tice to write do-files that do not require a particular directory structure or location
for the data. There are two exceptions that are useful. First, if you are loading a
dataset from the web, you need to specify the specific location of the file. For example,
use http://www.stata-press.com/data/r10/auto, clear. Second, you can specify
relative directories. Suppose there is a subdirectory \data located in your working di-
rectory. To keep things organized, you place all your datasets in this directory, while
your do-files and log files remain in your working directory. You can assess the datasets
by specifying the subdirectory. For example, use data\wf-lfp, clear.

Include seeds for random numbers

Random numbers are used in a variety of ways in data analysis. For example, if you
are bootstrapping standard errors, Stata draws repeated random samples. If you try to
replicate results that use random numbers, you need to use the same random numbers or
you will obtain different results. Stata uses pseudorandom numbers that are generated
by a formula in which one pseudorandom number is transformed to create the next
number. This transformation is done in such a way that the sequence of numbers
behaves as if it were truly random. With pseudorandom numbers, if you start with the
same number, referred to as the seed, you will re-create exactly the same sequence of
numbers. Accordingly, to reproduce exactly the same results when you rerun a program
that uses pseudorandom numbers, you need to start with the same seed. To set the
seed, use the command

set seed #

where # is a number you choose. For example, set seed 11020. For further details
and an example, see section 7.6.3.

3.2.2 Making do-files legible

I use the term legible to describe do-files that are internally documented and carefully
formatted. When writing a do-file, particularly one that does complex statistical analy-
ses or data manipulations, it is easy to get caught up in the logic of what you are doing

56 Chapter 3 Writing and debugging do-files

and forget about documenting your work and formatting the file to make the content
clear. Applying uniform procedures for documenting and formatting your do-files makes
them easier to debug and helps you and your collaborators understand what you did.
There are many ways to make your do-files easier to understand. If you do not like
my stylistic suggestions, feel free to create your own style. The important thing is to
establish a style that you and others find legible. If you are collaborating, try to agree
upon a common style for writing do-files that makes it simpler to share programs and
results. Clear and well-formatted do-files are so important for working efficiently that
one of the first things I do when helping someone debug a program is to reformat their
do-file to make the code easier to read.

Use lots of comments

I have never returned to a do-file and regretted how many comments it had, but I have
often wished that I had written more. Commands that seem obvious when I write them
can be obscure later. I try to add at least a few comments when I initially write a
do-file. After the program works the way I want, I add additional comments. These
comments are used both to label the output and to explain commands and options that
might later be confusing.

Stata provides three ways to add comments. The first two create comments on a
single line, whereas the third allows you to easily write multiline comments. The method
you use is largely a matter of personal preference.

* comments

If you start a line with a *, everything that follows on that line is treated as a
comment. For example,

* Select sample based on age and gender

or

* The following analysis includes only those people
* who responded to all four waves of the survey.

You can temporarily stop a command from being executed:

* logit lfp wc hc age inc

// comments

You can add comments after a //. For example,

// Select sample based on age and gender

This method can also be used at the end of a command. For example,

logit lfp wc hc // includes only education, add wages later

3.2.2 Making do-files legible 57

/* and */ comments

Everything between an opening /* and a closing */ is treated as a comment. This
is particularly useful for comments that extend over multiple lines. For example,

/*
These analyses are preliminary and are based on those countries
for which complete data were available by January 17, 2005.

*/

Comments as dividers

Comments can be used as dividers to distinguish among different parts of your
program. For example,

** Descriptive statistics by gender

or

// ==
// = Logit models of depression on genetic factors

Obscure comments

Comments are useful only when they are accurate and clear. When writing a complex
do-file, I use comments to remind me of things I need to do. For example,

* check this. wrong variable?

or

* see ekp´s comment and model specification

After the program is written, these comments should be deleted because later they will
be confusing.

Use alignment and indentation

It is easier to verify your commands if things line up. For example, here are two ways
to format the same commands for renaming variables. Which is easier for spotting a
mistake? This?

(Continued on next page)

